Multiple boundary peak solutions for some singularly perturbed Neumann problems
Changfeng Gui; Juncheng Wei; Matthias Winter
Annales de l'I.H.P. Analyse non linéaire (2000)
- Volume: 17, Issue: 1, page 47-82
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGui, Changfeng, Wei, Juncheng, and Winter, Matthias. "Multiple boundary peak solutions for some singularly perturbed Neumann problems." Annales de l'I.H.P. Analyse non linéaire 17.1 (2000): 47-82. <http://eudml.org/doc/78487>.
@article{Gui2000,
author = {Gui, Changfeng, Wei, Juncheng, Winter, Matthias},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {multiple boundary spikes; nonlinear elliptic equations},
language = {eng},
number = {1},
pages = {47-82},
publisher = {Gauthier-Villars},
title = {Multiple boundary peak solutions for some singularly perturbed Neumann problems},
url = {http://eudml.org/doc/78487},
volume = {17},
year = {2000},
}
TY - JOUR
AU - Gui, Changfeng
AU - Wei, Juncheng
AU - Winter, Matthias
TI - Multiple boundary peak solutions for some singularly perturbed Neumann problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2000
PB - Gauthier-Villars
VL - 17
IS - 1
SP - 47
EP - 82
LA - eng
KW - multiple boundary spikes; nonlinear elliptic equations
UR - http://eudml.org/doc/78487
ER -
References
top- [1] G. Adimurthi Mancinni and S.L. Yadava, The role of mean curvature in a semilinear Neumann problem involving the critical Sobolev exponent, Comm. P.D.E.20 (1995) 591-631. Zbl0847.35047MR1318082
- [2] F. Adimurthi Pacella and S.L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal.113 (1993) 318-350. Zbl0793.35033MR1218099
- [3] F. Adimurthi Pacella and S.L. Yadava, Characterization of concentration points and L∞-estimates for solutions involving the critical Sobolev exponent, Differential Integral Equations8 (1) (1995) 41-68. Zbl0814.35029MR1296109
- [4] S. Agmon, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965. Zbl0142.37401MR178246
- [5] D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math.30 (1978) 33-76. Zbl0407.92014MR511740
- [6] E.N. Dancer, A note on asymptotic uniqueness for some nonlinearities which change sign, Rocky Mountain Math. J. , to appear. Zbl0945.35031MR1748710
- [7] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal.69 (1986) 397-408. Zbl0613.35076MR867665
- [8] R. Gardner and L.A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh104 A (1986) 53-72. Zbl0625.35030MR877892
- [9] B. Gidas, W.-M. Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, in: Mathematical Analysis and Applications, Part A, Adv. Math. Suppl. Studies, Vol. 7A, Academic Press, New York, 1981, pp. 369-402. Zbl0469.35052
- [10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Zbl0562.35001MR737190
- [11] C. Gui, Multi-peak solutions for a semilinear Neumann problem, Duke Math. J.84 (1996) 739-769. Zbl0866.35039MR1408543
- [12] C. Gui and N. Ghoussoub, Multi-peak solutions for a semilinear Neumann problem involving the critical Sobolev exponent, Math. Z.229 (1998) 443-474. Zbl0955.35024MR1658569
- [13] C. Gui and J. Wei, Multiple interior peak solutions for some singularly perturbed Neumann problems, J. Differential Equations158 (1999) 1-27. Zbl1061.35502MR1721719
- [14] B. Helffer and J. Sjöstrand, Multiple wells in the semi-classical limit I, Comm. P.D.E.9 (1984) 337-408. Zbl0546.35053MR740094
- [15] J. Jang, On spike solutions of singularly perturbed semilinear Dirichlet problems, J. Differential Equations114 (1994) 370-395. Zbl0812.35008MR1303033
- [16] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in Rn, Arch. Rational Mech. Anal.105 (1989) 243-266. Zbl0676.35032MR969899
- [17] Y.Y. Li, On a singularly perturbed equation with Neumann boundary condition, Comm. P.D.E.23 (1998) 487-545. Zbl0898.35004MR1620632
- [18] C. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems, J. Differential Equations72 (1988) 1-27. Zbl0676.35030MR929196
- [19] J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol I, Springer, New York, Berlin, Heidelberg, Tokyo, 1972. Zbl0223.35039MR350177
- [20] W.-M. Ni, X. Pan and I. Takagi, Singular behavior of least-energy solutions of a semilinear Neumann problem involving critical Sobolev exponents, Duke Math. J.67 (1992) 1-20. Zbl0785.35041MR1174600
- [21] W.-M. Ni and I. Takagi, On the shape of least energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math.41 (1991) 819-851. Zbl0754.35042MR1115095
- [22] W.-M. Ni and I. Takagi, Locating the peaks of least energy solutions to a semilinear Neumann problem, Duke Math. J.70 (1993) 247-281. Zbl0796.35056MR1219814
- [23] W.-M. Ni and I. Takagi, Point-condensation generated by a reaction-diffusion system in axially symmetric domains, Japan J. Industrial Appl. Math.12 (1995) 327-365. Zbl0843.35006MR1337211
- [24] W.-M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math.48 (1995) 731-768. Zbl0838.35009MR1342381
- [25] Y.G. Oh, Existence of semi-classical bound states of nonlinear Schrödinger equations with potentials of the class (V)a, Comm. P.D.E.13 (12) (1988) 1499- 1519. Zbl0702.35228MR970154
- [26] Y.G. Oh, On positive multi-lump bound states of nonlinear Schrödinger equations under multiple-well potentials, Comm. Math. Phys.131 (1990) 223-253. Zbl0753.35097MR1065671
- [27] X.B. Pan, Condensation of least-energy solutions of a semilinear Neumann problem, J. Partial Differential Equations8 (1995) 1-36. Zbl0814.35039MR1317288
- [28] X.B. Pan, Condensation of least-energy solutions: the effect of boundary conditions, Nonlinear Analysis, TMA24 (1995) 195-222. Zbl0826.35037MR1312590
- [29] X.B. Pan, Further study on the effect of boundary conditions, J. Differential Equations117 (1995) 446-468. Zbl0832.35050MR1325806
- [30] J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations39 (1981) 269-290. Zbl0425.34028MR607786
- [31] Z.-Q. Wang, On the existence of multiple single-peaked solutions for a semilinear Neumann problem, Arch. Rational Mech. Anal.120 (1992) 375-399. Zbl0784.35035MR1185568
- [32] M. Ward, An asymptotic analysis of localized solutions for some reaction-diffusion models in multidimensional domains, Stud. Appl. Math.97 (1996) 103-126. Zbl0932.35059MR1395845
- [33] J. Wei, On the construction of single-peaked solutions of a singularly perturbed semilinear Dirichlet problem, J. Differential Equations129 (1996) 315-333. Zbl0865.35011MR1404386
- [34] J. Wei, On the effect of the geometry of the domain in a singularly perturbed Dirichlet problem, Differential Integral Equations, to appear. MR1811947
- [35] J. Wei, On the boundary spike layer solutions of singularly perturbed semilinear Neumann problem, J. Differential Equations134 (1997) 104-133. Zbl0873.35007MR1429093
- [36] J. Wei, On the construction of single interior peak solutions for a singularly perturbed Neumann problem, in: Partial Differential Equations: Theory and Numerical solution; CRC Press LLC, 1998, pp. 336-349. Zbl0931.35018
- [37] J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equation, Ann. Inst. H. Poincaré Anal. Non Linéaire15 (1998) 459-492. Zbl0910.35049MR1632937
- [38] J. Wei and M. Winter, Multiple boundary spike solutions for a wide class of singular perturbation problems, J. London Math. Soc.59 (2) (1999) 585-606. Zbl0922.35025
- [39] K. Yosida, Functional Analysis, 5th ed., Springer, Berlin, 1978. Zbl0365.46001MR500055
- [40] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Fixed-Point Theorems, Springer, Berlin, 1986. Zbl0583.47050MR816732
Citations in EuDML Documents
top- Manuel del Pino, Michał Kowalczyk, Juncheng Wei, Multi-bump ground states of the Gierer–Meinhardt system in R2
- A. Malchiodi, Wei-Ming Ni, Juncheng Wei, Multiple clustered layer solutions for semilinear Neumann problems on a ball
- Teresa D'Aprile, Angela Pistoia, Existence, multiplicity and profile of sign-changing clustered solutions of a semiclassical nonlinear Schrödinger equation
- Olivier Rey, Juncheng Wei, Blowing up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Part II :
- Tai-Chia Lin, Juncheng Wei, Spikes in two coupled nonlinear Schrödinger equations
- Teresa D'Aprile, Juncheng Wei, Clustered solutions around harmonic centers to a coupled elliptic system
- Henri Berestycki, Juncheng Wei, On singular perturbation problems with Robin boundary condition
- Teresa D’Aprile, Locating the boundary peaks of least-energy solutions to a singularly perturbed Dirichlet problem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.