K -théorie algébrique et représentations de groupes

Jean-Louis Loday

Annales scientifiques de l'École Normale Supérieure (1976)

  • Volume: 9, Issue: 3, page 309-377
  • ISSN: 0012-9593

How to cite

top

Loday, Jean-Louis. "$K$-théorie algébrique et représentations de groupes." Annales scientifiques de l'École Normale Supérieure 9.3 (1976): 309-377. <http://eudml.org/doc/81981>.

@article{Loday1976,
author = {Loday, Jean-Louis},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {3},
pages = {309-377},
publisher = {Elsevier},
title = {$K$-théorie algébrique et représentations de groupes},
url = {http://eudml.org/doc/81981},
volume = {9},
year = {1976},
}

TY - JOUR
AU - Loday, Jean-Louis
TI - $K$-théorie algébrique et représentations de groupes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1976
PB - Elsevier
VL - 9
IS - 3
SP - 309
EP - 377
LA - fre
UR - http://eudml.org/doc/81981
ER -

References

top
  1. [1] M. BARRATT, D. KAHN and S. PRIDDY, On Ω∞ S∞ and the Infinite Symmetric Group (Proc. Symp. in Pure Math., vol. 22, 1971, p. 217-220, Amer. Math. Soc.). 
  2. [2] H. BASS, Algebraic K-Theory. Benjamin, 1968. Zbl0174.30302MR40 #2736
  3. [3] H. BASS, Unitary Algebraic K-Theory (Springer Lecture Notes, n° 343, 1973, p. 57-265). Zbl0299.18005MR51 #8211
  4. [4] A. BOREL, Cohomologie réelle stable de groupes S-arithmétiques classiques (C. R. Acad. Sc. Paris, t. 274, série A, 1972, p. 1700-1702). Zbl0235.57015MR46 #7400
  5. [5] P. E. CONNER and E.E. FLOYD, The Relation of Cobordism to K-Theories (Springer Lecture Notes, n° 28, 1966). Zbl0161.42802MR35 #7344
  6. [6] S. M. GERSTEN, K3 of a Ring is H3 of the Steinberg Group (Proc. Amer. Math. Soc., vol. 37, 1973, p. 366-368). Zbl0272.55006MR47 #8655
  7. [7] S. M. GERSTEN, On the Spectrum of Algebraic K-Theory (Bull. Amer. Math. Soc., vol. 78, 1972, p. 216-219). Zbl0261.18014MR45 #8705
  8. [8] A. E. HATCHER and J. WAGONER, Pseudo-isotopies of Compact Manifolds. (Astérisque, vol. 6, 1973, Soc. Math. de France). Zbl0274.57010MR50 #5821
  9. [9] H. HOPF, Fundamentalgruppe und zweite Bettische Gruppe (Comment. Math. Helv., vol. 14, 1941-1942, p. 257-309). Zbl0027.09503MR3,316eJFM68.0503.01
  10. [10] M. KAROUBI. Communication privée. 
  11. [11] M. KAROUBI, K-théorie algébrique. Localisation des formes quadratiques (C.R. Acad. Sc. Paris, t. 279, série A, 1974, p. 487-490). Zbl0302.18008MR52 #10850
  12. [12] M. KAROUBI, Périodicité de la K-théorie hermitienne (Springer Lecture Notes, n° 343, 1973, p. 301-411). Zbl0274.18016MR52 #3284
  13. [13] M. KAROUBI et O. VILLAMAYOR, K-théorie algébrique et K-théorie topologique I, II (Math. Scand., vol. 28, 1971, p. 265-307 et 32, 1973, p. 57-86). Zbl0272.18009
  14. [14] G. G. KASPAROV, Sur l'invariance homotopique des nombres de Pontrjagin rationnels [Dokl. Akad. Nauk. S.S.S.R., vol. 190, 1970, p. 1022-1025 (en russe)]. Zbl0212.28402MR44 #4769
  15. [15] M. KERVAIRE, Multiplicateurs de Schur et K-théorie. Essays on Topology and related topics, Springer, 1970, p. 212-225. Zbl0211.32903MR43 #321
  16. [16] F. LAUDENBACH, Topologie de la dimension trois: homotopie et isotopie (Astérisque, vol. 12, 1974, Soc. Math. de France). Zbl0293.57004MR50 #8527
  17. [17] J. L. LODAY, Structure multiplicative en K-théorie algébrique (C.R. Acad. Sc. Paris, t. 279, série A, 1974, p. 321-324). Zbl0293.18019MR50 #10016
  18. [18] G. LUSZTIG, Novikov's Higher Signature and Families of Elliptic Operators (J. Diff. Géom., vol. 7, 1972, p. 229-256). Zbl0265.57009MR48 #1250
  19. [19] Y. MATSUSHIMA, On Betti Numbers of Compact, Locally Symmetric Riemanian Manifolds (Osaka Math. J., vol. 14, 1962, p. 1-20). Zbl0118.38401MR25 #4549
  20. [20] J. MILNOR, Introduction to Algebraic K-Theory (Annals of Math. Studies Princeton, vol. 72, 1971. Zbl0237.18005MR50 #2304
  21. [21] J. MILNOR, On Axiomatic Homology Theory (Pac. J. Math., vol. 12, 1962, p. 337-341). Zbl0114.39604MR28 #2544
  22. [22] A. S. MIŠČENKO, Homotopy Invariants of non Simply Connected Manifolds. Rationals Invariants (Math. of the U.R.S.S., vol. 4, 1970, p. 506-519). Zbl0232.55015
  23. [23] S. P. NOVIKOV, Hermitian Analogues of K-Theory I, II (Math. of the U.S.S.R., vol. 4, 1970, p. 257-292 et 479-505). Zbl0233.57009MR45 #1994
  24. [24] S. P. NOVIKOV, Analogues hermitiens de la K-théorie (Actes Congrès Intern. Math., t. II, 1970, p. 39-45). Zbl0228.18003MR55 #4216
  25. [25] D. QUILLEN, Cohomology of Groups. (Actes Congrès Intern. Math., t. II, 1970, p. 47-51). Zbl0225.18011MR58 #7627a
  26. [26] D. QUILLEN, Higher Algebraic K-Theory I. (Springer Lecture Notes, n° 341, 1973, p. 85-147). Zbl0292.18004MR49 #2895
  27. [27] J. L. SHANESON, Wall's Surgery Obstruction Groups for G × Z (Annals of Math., vol. 90, 1969, p. 296-334). Zbl0182.57303MR39 #7614
  28. [28] N. E. STEENROD, The Topology of Fibre Bundles, Princeton University Press, 1951. Zbl0054.07103MR12,522b
  29. [29] I. A. VOLODIN, Groupes de Whitehead généralisés et pseudo-isotopie [Uspehi mat. Nauk., vol. 27, 1972, p. 229-230 (en russe)]. Zbl0277.18013MR52 #15501
  30. [30] J. WAGONER, Delooping Classifying Spaces in Algebraic K-Theory. (Topology, vol. 11, 1972, p. 349-370). Zbl0276.18012MR50 #7293
  31. [31] W. WALDHAUSEN, Algebraic K-Theory of Generalised Free Products (preprint). 
  32. [32] C. T. C. WALL, Foundations of Algebraic L-Theory (Springer Lecture Notes, n° 343, 1973, p. 266-300). Zbl0269.18010MR50 #10018
  33. [33] C. T. C. WALL, Surgery on Compact Manifolds, Academic Press, New York, 1970. Zbl0219.57024MR55 #4217
  34. [34] L. N. WASSERSTEIN, Stability of Unitary and Orthogonal Groups Over Rings with Involution (Math. Sborn., vol. 81, 1970, p. 328-351 (en russe)). Zbl0253.20066
  35. [35] G. W. WHITEHEAD, Generalized Homology Theories (Trans. A.M.S., vol. 102, 1962, p. 227-283). Zbl0124.38302MR25 #573
  36. [36] J. H. C. WHITEHEAD, Combinatorial Homotopy. (Bull. A.M.S., vol. 55, 1949, p. 213-245). Zbl0040.38704MR11,48b
  37. [37] J. H. C. WHITEHEAD, Simple Homotopy Types. (Amer. J. Math., vol. 72, 1950, p. 1-57). Zbl0040.38901MR11,735c
  38. [38] J.-L. LODAY, Higher Whitehead Groups and Stable Homotopy (Bull. A.M.S., vol. 82, 1976). Zbl0337.55015MR52 #14000
  39. [39] F. T. FARRELL and W. C. HSIANG, Manifolds with π1 = G×αT. (Amer. J. Math. vol. 95, 1973, p. 813-848). Zbl0304.57009MR52 #6726

Citations in EuDML Documents

top
  1. Philippe Gaucher, Produit tensoriel de matrices, homologie cyclique, homologie des algèbres de Lie
  2. Naoufel Battikh, Relation entre les conjectures de Farrell-Jones en K -théories algébrique et hermitienne
  3. Jean-Louis Loday, Homotopie des espaces de concordances
  4. Jean-Louis Loday, Excision en k -théorie algébrique
  5. Daniel Guin, K-théorie algébrique et invariants des formes quadratiques
  6. Christian Kassel, La K-théorie stable
  7. Christian Kassel, Stabilisation de la K -théorie algébrique des espaces topologiques
  8. Jun Yang, On the real cohomology of arithmetic groups and the rank conjecture for number fields
  9. Joseph Tapia, K -théorie algébrique négative et K -théorie topologique de l’algèbre de Fréchet des opérateurs régularisants
  10. Jean-Louis Loday, Comparaison des homologies du groupe linéaire et de son algèbre de Lie

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.