Représentations cuspidales du groupe linéaire

H. Carayol

Annales scientifiques de l'École Normale Supérieure (1984)

  • Volume: 17, Issue: 2, page 191-225
  • ISSN: 0012-9593

How to cite

top

Carayol, H.. "Représentations cuspidales du groupe linéaire." Annales scientifiques de l'École Normale Supérieure 17.2 (1984): 191-225. <http://eudml.org/doc/82139>.

@article{Carayol1984,
author = {Carayol, H.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {cuspidal representation; maximal compact subgroup},
language = {fre},
number = {2},
pages = {191-225},
publisher = {Elsevier},
title = {Représentations cuspidales du groupe linéaire},
url = {http://eudml.org/doc/82139},
volume = {17},
year = {1984},
}

TY - JOUR
AU - Carayol, H.
TI - Représentations cuspidales du groupe linéaire
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1984
PB - Elsevier
VL - 17
IS - 2
SP - 191
EP - 225
LA - fre
KW - cuspidal representation; maximal compact subgroup
UR - http://eudml.org/doc/82139
ER -

References

top
  1. [1] I. N. BERNSTEIN et A. V. ZELEVINSKY, Representations of the Group GLn(F) where F is a Non Archimedian Local Field (Russian Math., Surveys, 31, n° 3, 1976, p. 1-68). Zbl0348.43007
  2. [2] A. BOREL, Admissible Representations of a Semi-Simple Lie Group Over a Local Field with Vectors Fixed Under an Iwahori Subgroup (Inventiones Math., 35, 1976, p. 233-259). Zbl0334.22012MR56 #3196
  3. [3] N. BOURBAKI, Groupes et algèbres de Lie, chap. IV, V, VI (Act. Sc. Ind., 1337, Hermann, Paris, 1968). MR39 #1590
  4. [4] H. CARAYOL, Représentations supercuspidales de GLn (C.R. Acad. Sc. Paris, série A, t. 288, 1979, p. 17-20). Zbl0398.22024MR80b:22023
  5. [5] P. CARTIER, Sur les représentations des groupes réductifs p-adiques et leurs caractères. Séminaire Bourbaki, 28e année 1975/1976, exp. 471 (Lecture notes in Math., Vol. 567, Springer-Verlag, Berlin, 1977). Zbl0365.22015
  6. [6] P. CARTIER, Representations of p-Adic Groups. Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure Math., vol. 33, part 1, Amer. Math. Soc., Providence RI, 1979, p. 111-155). Zbl0421.22010MR81e:22029
  7. [7] W. CASSELMAN, An Assortment of Results on Representations of GL2(k). Modular Functions of One Variable II (Lectures notes in Math., vol. 349, Springer-Verlag, Berlin, 1972, p. 3-54). Zbl0301.22011
  8. [8] W. CASSELMAN, The Restriction of a Representation of GL2(k) to GL2(O) (Math. Annalen, 206, 1973, p. 311-318). Zbl0253.20062MR49 #3040
  9. [9] L. CORWIN, Representations of Division Algebras Over Local Fields (Adv. in Math., 13, 1974, p. 259-267). Zbl0307.12020MR50 #281
  10. [10] L. CORWIN, Representations of Division Algebras Over Local Fields II, Preprint. Zbl0508.12015
  11. [11] P. DELIGNE, Formes modulaires et représentations de GL2. Modular Functions of One Variable II (Lecture notes in Math., vol. 349, Springer-Verlag, Berlin, 1972, p. 55-105). Zbl0271.10032MR50 #240
  12. [12] P. DELIGNE, Un calcul de dimension, inspiré par Tunnell. Notes manuscrites non publiées. 
  13. [13] S. GELBART, Automorphic Forms on Adele Groups. Princeton university press, Princeton, New Jersey, 1975. Zbl0329.10018
  14. [14] S. I. GELFAND, Representations of the General Linear Group Over a Finite Field. Proc. of the Summer School on Group Representations, Bolyai Janos [Math. Soc. (Budapest 1971). Adam Hilger LDT, London, p. 119-132]. Zbl0322.20023MR56 #490
  15. [15] P. GÉRARDIN, Construction de séries discrètes p-adiques (Lectures notes in Math., vol. 462, Springer-Verlag, Berlin, 1975). Zbl0302.22002MR53 #719
  16. [16] P. GÉRARDIN, Cuspidal Unramified Series for Central Simple Algebras Over Local Fields. Automorphic Forms, Representations and L-Functions (Proc. Sympos. Pure. Math., vol. 33, Part 1, Amer. Math. Soc., Providence RI, 1979, p. 157-170). Zbl0416.22019MR81j:22022
  17. [17] P. GÉRARDIN et Ph. KUTZKO, Facteurs locaux pour GL2 (Ann. scient. Éc. Norm. Sup., 4e série, t. 13, 1980, p. 349-384). Zbl0448.22015
  18. [18] R. GODEMENT et H. JACQUET, Zeta Functions of Simple Algebras (Lecture Notes in Math., vol. 260, Springer-Verlag, New York, 1972). Zbl0244.12011MR49 #7241
  19. [19] HARISH-CHANDRA, Harmonic Analysis on Reductive p-Adic Groups Harmonic Analysis on Homogeneous Spaces (Proc. Sympos. Pure Math., vol. 26, Amer. Math. Soc., Providence RI, 1973, p. 167-192). Zbl0289.22018MR49 #5238
  20. [20] G. HENNIART, La conjecture de Langlands locale pour GL3 (à paraître). Un preprint I.H.E.S. est disponible. 
  21. [21] G. HENNIART, Les conjectures de Langlands locales pour GLn. Journées arithmétiques de Metz (Astérisque, 94, 1982, p. 67-85). Zbl0504.12017MR84g:12021
  22. [22] R. HOWE, The Fourier Transform and Germs of Characters (Case of GLn Over a p-Adic Field) (Math. Ann., 208, 1974, p. 305-322). Zbl0266.43007MR49 #7391
  23. [23] R. HOWE, Tamely Ramified Supercuspidal Representations of GLn (Pacific Journal of Math., vol. 73, n° 2, 1977, p. 437-460). Zbl0404.22019MR58 #11241
  24. [24] H. JACQUET, Sur les représentations des groupes réductifs p-adiques (C.R. Acad. Sc., Paris, série A, t. 280, 1975, p. 1271-1272). Zbl0309.22012MR51 #5856
  25. [25] H. JACQUET et R. P. LANGLANDS, Automorphic Forms on GL2 (Lecture notes in Math., vol. 114, Springer-Verlag, Berlin, 1968). Zbl0236.12010MR53 #5481
  26. [26] D. KAZHDAN et P. DELIGNE, On Representations of Local Division Algebras. Preprint, 1982. 
  27. [27] H. KOCH, Zur Arithmetik in Divisions Algebren Uber Lokalen Körpern (Math. Nachr., 100, 1981, p. 9-19). Zbl0475.12025MR83a:12028
  28. [28] H. KOCH et E. W. ZINK, Zur Korrespondenz von Darstellungen der Galoisgruppen und der zentralen Divisions algebren über lokalen Körper (Der Zahme Fall) (Math. Nachr., 98, 1980, p. 83-119). Zbl0475.12024MR83h:12025
  29. [29] Ph. KUTZKO, On the Supercuspidal Representations of GL(2), I, II (Amer. J. Math., vol. 100, 1978, p. 43-60 et 705-716). Zbl0421.22012MR58 #22411b
  30. [30] Ph. KUTZKO, The Exceptionnal Representations of GL2 (à paraître). 
  31. [31] Ph. KUTZKO, The Langlands Conjecture for GL2 of a Local Field (Annals of Math., vol. 112, n° 2, septembre 1980, p. 381-412). Zbl0469.22013
  32. [32] R. P. LANGLANDS, Problems in the Theory of Automorphic Forms. Lectures in Modern Analysis and Applications (Lecture Notes in Math., vol. 170, Springer, New York, 1970, p. 18-86). Zbl0225.14022MR46 #1758
  33. [33] G. LUSZTIG, Some Remarks on the Supercuspidal Representations of p-Adic Semi-Simple Groups (Proc. Sympos. Pure Math., vol. 33, part 1, Amer. Math. Soc., Providence RI, 1979, p. 171-178). Zbl0421.22009MR81f:22031
  34. [34] A. MOY, Local Constants and the Tame Langlands Correspondence (Thèse, Université de Chicago, juin 1982). 
  35. [35] J. ROGAWSKI, An Application of the Building to Orbital Integrals (Composition Math., vol. 42, fasc. 3, 1981, p. 417-423). Zbl0471.22020MR83g:22011
  36. [36] J. ROGAWSKI, Representations of GLn and Division Algebras Over a p-Adic Field (Duke Math. Journal, vol. 50, n° 1, 1983, p. 161-196). Zbl0523.22015MR84j:12018
  37. [37] J. A. SHALIKA, A Theorem on Semi-Simple p-Adic Groups (Ann. of Math., 95, n° 1, 1972, p. 226-242). Zbl0281.22011MR48 #2310
  38. [38] T. SHINTANI, On Certain Square-Integrable Irreductible Unitary Representations of Some p-Adic Linear Groups (J. Math. Soc. Japan, 20, 1968, p. 522-565). Zbl0194.05602MR38 #2252
  39. [39] J. TITS, Reductive Groups Over Local Fields. Automorphic Forms, Representations and L-Functions (Proc. Sympos. Math., vol. 33, part 1, Amer. Math. Soc., Providence RI, 1979, p. 29-69). Zbl0415.20035MR80h:20064
  40. [40] J. TUNNELL, On the Local Langlands Conjecture for GL(2) (Inv. Math., 46, 1978, p. 179-200). Zbl0385.12006MR57 #16262
  41. [41] M. F. VIGNERAS, Représentations des algèbres centrales simples sur un corps local non archimédien. Notes pour des conférences à Paris-VII. 
  42. [42] A. V. ZELEVINSKY, Induced Representations of Reductive p-Adic Groups II. On Irreductible Representations of GL(n) (Ann. scient. Éc. Norm. Sup., série 4, 13, fasc. 2, 1980, p. 165-210). Zbl0441.22014MR83g:22012

Citations in EuDML Documents

top
  1. P. Kutzko, J. Pantoja, The restriction to SL 2 of a supercuspidal representation of GL 2
  2. Marie-France Vignéras, Représentations modulaires de G L ( 2 , F ) en caractéristique l , F corps p -adique, p l
  3. Lawrence Morris, Tamely ramified supercuspidal representations of classical groups. II. Representation theory
  4. Philip Kutzko, David Manderscheid, On the supercuspidal representations of GL N , N the product of two primes
  5. Dipendra Prasad, Trilinear forms for representations of GL ( 2 ) and local ϵ -factors
  6. Corinne Blondel, Uniqueness of Whittaker model for some supercuspidal representations of the metaplectic group
  7. Colin J. Bushnell, Philip C. Kutzko, The admissible dual of SL ( N ) . I
  8. Lawrence Morris, Tamely ramified supercuspidal representations
  9. Corinne Blondel, Les représentations supercuspidales des groupes métaplectiques sur G L ( 2 ) et leurs caractères
  10. Guy Henniart, Représentations des groupes réductifs p -adiques

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.