Représentations exceptionnelles des groupes semi-simples

M. Brion

Annales scientifiques de l'École Normale Supérieure (1985)

  • Volume: 18, Issue: 2, page 345-387
  • ISSN: 0012-9593

How to cite

top

Brion, M.. "Représentations exceptionnelles des groupes semi-simples." Annales scientifiques de l'École Normale Supérieure 18.2 (1985): 345-387. <http://eudml.org/doc/82161>.

@article{Brion1985,
author = {Brion, M.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {rational representations; semisimple group; exceptional representations; simple groups; singularities},
language = {fre},
number = {2},
pages = {345-387},
publisher = {Elsevier},
title = {Représentations exceptionnelles des groupes semi-simples},
url = {http://eudml.org/doc/82161},
volume = {18},
year = {1985},
}

TY - JOUR
AU - Brion, M.
TI - Représentations exceptionnelles des groupes semi-simples
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1985
PB - Elsevier
VL - 18
IS - 2
SP - 345
EP - 387
LA - fre
KW - rational representations; semisimple group; exceptional representations; simple groups; singularities
UR - http://eudml.org/doc/82161
ER -

References

top
  1. [1] G. SCHWARZ, Representations of Simple Lie Groups with Regular Rings of Invariants (Invent. Math., vol. 49, 1978, p. 167-191). Zbl0391.20032MR80m:14032
  2. [2] G. SCHWARZ, Representations of Simple Lie Groups with a Free Module of Covariants (invent. Math., vol. 50, 1978, p. 1-12). Zbl0391.20033MR80c:14008
  3. [3] V. KAČ, Some Remarks on Nilpotent Orbits (J. Alg., vol. 64, 1980, p. 190-213). Zbl0431.17007MR81i:17005
  4. [4] H. KRAFT et C. PROCESI, Closures of Conjugacy Classes of Matrices are Normal (Invent. Math., vol. 53, 1979, p. 227-247). Zbl0434.14026MR80m:14037
  5. [5] M. BRION, Sur certaines représentations des groupes semi-simples (C.R. Acad. Sc., t. 296, série I, 1983, p. 5-6). Zbl0538.14007MR84b:14027
  6. [6] M. BRION, Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple (Ann. Inst. Fourier, t. 33, fasc. I, 1983, p. 1-27). Zbl0475.14038MR85a:14031
  7. [7] R. FOSSUM et B. IVERSEN, On Picard Groups of Some Algebraic Fiber Spaces (J. Pure Appl. Algebra, vol. 3, 1973, p. 269-280). Zbl0277.14005MR50 #9864
  8. [8] G. KEMPF, Toroidal Embeddings (Springer L.N., n° 339). Zbl0271.14017MR49 #299
  9. [9] N. BOURBAKI, Groupes et algèbres de Lie, chap. VII et VIII, Hermann. 
  10. [10] D. E. LITTLEWOOD, The Theory of Group Characters, Oxford University Press. Zbl0011.25001
  11. [11] I. G. MACDONALD, Symmetric Functions and Hall Polynomials, Oxford University Press. Zbl0487.20007
  12. [12] D. E. LITTLEWOOD, Products and Plethysms of Characters with Orthogonal, Symplectic and Symmetric Groups (Can. J. Math., vol. 10, 1958, p. 17-32). Zbl0079.03604MR20 #1715
  13. [13] H. WEYL, Cesammelte Abhandlungen, Band III. 
  14. [14] R. C. KING, Spinor representations (Lecture Notes in Physics, n° 50) ; Group Theoretical Methods in Physics, Springer-Verlag. Zbl0369.22017MR58 #1043
  15. [15] D. E. LITTLEWOOD, On the Concomitants of Spin Tensors (Proc. London Math. Soc., (2), vol. 49, 1947, p. 307-327). Zbl0033.00902MR9,76c
  16. [16] M. KRÄMER, Eine Klassifikation bestimmter Untergruppen kompakter Liegruppen (Comm. in Algebra, vol. 3, 1975, p. 691-737). Zbl0309.22013MR51 #13140
  17. [17] W. LICHTENSTEIN, A System of Quadrics Describing the Orbit of the Highest Weight Vector (Proc. A.M.S., vol. 84, n° 4, avril 1982). Zbl0501.22017MR83h:14046
  18. [18] E. VINBERG et V. POPOV, On a Class of Quasihomogeneous Varieties (Math. U.S.S.R. Izv., vol. 6, 1972, p. 743-748). Zbl0255.14016MR47 #1815
  19. [19] W. BORHO et H. KRAFT, Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen (Comm. Math. Helv., vol. 54, 1979, p. 61-104). Zbl0395.14013MR82m:14027
  20. [20] S. J. HARIS, Some Irreducible Representations of Exceptional Algebraic Groups (Amer. J. Maths., vol. 93, 1971, p. 75-106). Zbl0215.39603MR43 #4829
  21. [21] J. G. MARS, Les nombres de Tamagawa de certains groupes exceptionnels (Bull. Soc. Math. Fr., t. 94, 1966, p. 97-140). Zbl0146.04601MR35 #4227
  22. [22] J. I. IGUSA, A Classification of Spinors up to Dimension Twelve (Amer. J. Math., vol. 92, 1970, p. 997-1028). Zbl0217.36203MR43 #3291
  23. [23] G. KEMPF, Images of Homogeneous Vector Bundles and Varieties of Complexes (Bull. Amer. Math. Soc., vol. 81, 1975, n° 5, p. 900-901). Zbl0322.14020MR52 #5689
  24. [24] C. DE CONCINI et E. STRICKLAND, On the Variety of Complexes (Adv. in Maths, vol. 41, 1981, n° 1, p. 57-77). Zbl0471.14026MR82m:14032
  25. [25] Th. VUST, Sur la théorie des invariants des groupes classiques (Ann. Inst. Fourier, vol. 26, n° 1, 1976, p. 1-31). Zbl0314.20035MR53 #8082

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.