The line bundles on the moduli of parabolic G -bundles over curves and their sections

Yves Laszlo; Christoph Sorger

Annales scientifiques de l'École Normale Supérieure (1997)

  • Volume: 30, Issue: 4, page 499-525
  • ISSN: 0012-9593

How to cite

top

Laszlo, Yves, and Sorger, Christoph. "The line bundles on the moduli of parabolic $G$-bundles over curves and their sections." Annales scientifiques de l'École Normale Supérieure 30.4 (1997): 499-525. <http://eudml.org/doc/82440>.

@article{Laszlo1997,
author = {Laszlo, Yves, Sorger, Christoph},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {moduli stack; parabolic bundles over a complex curve; Picard group; uniformization; pfaffian line bundle; conformal blocks; Verlinde formula},
language = {eng},
number = {4},
pages = {499-525},
publisher = {Elsevier},
title = {The line bundles on the moduli of parabolic $G$-bundles over curves and their sections},
url = {http://eudml.org/doc/82440},
volume = {30},
year = {1997},
}

TY - JOUR
AU - Laszlo, Yves
AU - Sorger, Christoph
TI - The line bundles on the moduli of parabolic $G$-bundles over curves and their sections
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 4
SP - 499
EP - 525
LA - eng
KW - moduli stack; parabolic bundles over a complex curve; Picard group; uniformization; pfaffian line bundle; conformal blocks; Verlinde formula
UR - http://eudml.org/doc/82440
ER -

References

top
  1. [1] A. BEAUVILLE, Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry, (Israel Math. Conf. Proc., Vol. 9, 1996). Zbl0848.17024MR97f:17025
  2. [2] A. BEAUVILLE, Fibrés de rang deux sur une courbe, fibré déterminant et fonctions thêta, II, (Bull. Soc. math. France, Vol. 119, 1991, pp. 259-291). Zbl0756.14017MR92m:14041
  3. [3] A. BEAUVILLE and Y. LASZLO, Conformal blocks and generalized theta functions, (Comm. Math. Physics, Vol. 164, 1994, pp. 385-419). Zbl0815.14015MR95k:14011
  4. [4] A. BEAUVILLE and Y. LASZLO, A result on algebraic descent, (Comptes Rendus Acad. Sci. Paris, Vol. 320, Série I, 1995, pp. 335-340). Zbl0852.13005MR96a:14049
  5. [5] R. BOTT, Homogeneous vector bundles, (Ann. of Math., Series 2, Vol. 66, 1957, pp. 203-248). Zbl0094.35701MR19,681d
  6. [6] E. B. DYNKIN, Semisimple subalgebras of semisimple Lie algebras, (AMS Transl. Ser. II, Vol. 6, 1957, pp. 111-244). Zbl0077.03404
  7. [7] J.-M. DREZET and M. S. NARASIMHAN, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, (Inv. math., Vol. 97, 1989, pp. 53-94). Zbl0689.14012MR90d:14008
  8. [8] V. DRINFELD and C. SIMPSON, B-structures on G-bundles and local triviality, (Math.-Res.-Lett., Vol. 2, 1995, pp. 823-829). Zbl0874.14043MR96k:14013
  9. [9] G. FALTINGS, Stable G-bundles and projective connections, (J. Alg. Geometry, Vol. 2, 1993, pp. 507-568). Zbl0790.14019MR94i:14015
  10. [10] G. FALTINGS, A proof of the Verlinde formula, (J. Alg. Geometry, Vol. 3, 1994, pp. 347-374). Zbl0809.14009MR95j:14013
  11. [11] R. FOSSUM and B. IVERSEN, On Picard groups of algebraic fiber spaces, (J. pure and appl. algebra, Vol. 3, 1973, pp. 269-280). Zbl0277.14005MR50 #9864
  12. [12] V.G. KAC, Infinite dimensional Lie algebras (Third edition), Cambride, (Cambridge University Press, 1990). Zbl0716.17022MR92k:17038
  13. [13] G. KEMPF, Deformations of Semi-Euler Characteristics, (Amer. J. of Math., Vol. 114, 1992, pp. 973-978). Zbl0780.14012MR93k:14025
  14. [14] F. KNUDSEN and D. MUMFORD, The projectivity of the moduli space of stable curves I : preliminaries on “det” and “div”, (Math. Scand., Vol. 39, 1976, pp. 19-55). Zbl0343.14008MR55 #10465
  15. [15] S. KUMAR, Demazure character formula in arbitrary Kac-Moody setting, (Inv. math., Vol. 89, 1987, pp. 395-423). Zbl0635.14023MR88i:17018
  16. [16] S. KUMAR, M. S. NARASIMHAN and A. RAMANATHAN, Infinite Grassmannians and Moduli Spaces of G-bundles, (Math. Annalen, Vol. 300, 1994, pp. 395-423). Zbl0803.14012MR96e:14011
  17. [17] S. KUMAR and M. S. NARASIMHAN, Picard group of the moduli spaces of G-bundles (e-print alg-geom/9511012). 
  18. [18] G. LAUMON and L. MORET-BAILLY, Champs algébriques, (Preprint Université Paris 11 (Orsay), 1992). 
  19. [19] G. LAUMON and M. RAPOPORT, The Langlands lemma and the Betti numbers of stacks of G-bundles on a curve, (Internat. J. Math., Vol. 7, 1996, pp. 29-45). Zbl0871.14028MR97f:14012
  20. [20] O. MATHIEU, Formules de caractères pour les algèbres de Kac-Moody générales, (Astérisque, Vol. 159-160, 1988). Zbl0683.17010MR90d:17024
  21. [21] V. B. MEHTA and C. S. SESHADRI, Moduli of vector bundles on curves with parabolic structures, (Math. Annales, Vol. 248, 1980, pp. 205-239). Zbl0454.14006MR81i:14010
  22. [22] D. MUMFORD, Theta characteristics on an algebraic curve, (Ann. Sci. École Norm. Sup., Vol. 4, 1971, pp. 181-192). Zbl0216.05904MR45 #1918
  23. [23] C. PAULY, Espaces de modules paraboliques et blocks conformes, (Duke Math. J., Vol. 84, 1996, pp. 217-235). Zbl0877.14031MR97h:14022
  24. [24] A. RAMANATHAN, Stable Principal G-bundles, PhD. Thesis, (Bombay University, 1976). 
  25. [25] I. R. SHAFAREVICH, On some infinite-dimensional groups, (II Math. USSR-Izv., Vol. 18, 1982, pp. 185-194). Zbl0491.14025
  26. [26] P. SLODOWY, On the geometry of Schubert varieties attached to Kac-Moody Lie algebras, (Can. Math. Soc. Conf Proc., Vol. 6, 1984, pp. 405-442). Zbl0591.14038MR87i:14043
  27. [27] Ch. SORGER, Thêta-caractéristiques des courbes tracées sur une surface lisse, (J. reine angew. Math., Vol. 435, 1993, pp. 83-118). Zbl0757.14024MR94b:14026
  28. [28] Ch. SORGER, La semi-caractéristique d'Euler-Poincaré des faisceaux ⍵-quadratiques sur un schéma de Cohen-Macaulay, (Bull. Soc. Math. France, Vol. 122, 1994, pp. 225-233). Zbl0814.14020
  29. [29] Ch. Sorger, La formule de Verlinde, (Séminaire Bourbaki, No 794, 1994). Zbl0878.17024
  30. [30] R. STEINBERG, Générateurs, relations et revêtements de groupes algébriques, (Colloque sur la théorie des groupes algébriques, Bruxelles, Gauthier-Villars, Paris, 1962, pp. 113-127). Zbl0272.20036MR27 #3638
  31. [31] A. TSUCHIYA, K. UENO and Y. YAMADA, Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries, (Adv. Studies in Pure Math., Vol. 19, 1989, pp. 459-566). Zbl0696.17010MR92a:81191

Citations in EuDML Documents

top
  1. Yves Laszlo, Linearization of group stack actions and the Picard group of the moduli of S L r / μ s -bundles on a curve
  2. Christoph Sorger, On moduli of G -bundles of a curve for exceptional G
  3. David Ben-Zvi, Edward Frenkel, Spectral curves, opers and integrable systems
  4. Yves Laszlo, About G -bundles over elliptic curves
  5. Arnaud Beauville, Orthogonal bundles on curves and theta functions
  6. Constantin Teleman, Christopher Woodward, Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.