Types and Hecke algebras for principal series representations of split reductive p -adic groups

Alan Roche

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 3, page 361-413
  • ISSN: 0012-9593

How to cite

top

Roche, Alan. "Types and Hecke algebras for principal series representations of split reductive $p$-adic groups." Annales scientifiques de l'École Normale Supérieure 31.3 (1998): 361-413. <http://eudml.org/doc/82464>.

@article{Roche1998,
author = {Roche, Alan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {finite dimensional representations; Hecke algebra; split reductive group; principal series representation; square integrability},
language = {eng},
number = {3},
pages = {361-413},
publisher = {Elsevier},
title = {Types and Hecke algebras for principal series representations of split reductive $p$-adic groups},
url = {http://eudml.org/doc/82464},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Roche, Alan
TI - Types and Hecke algebras for principal series representations of split reductive $p$-adic groups
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 3
SP - 361
EP - 413
LA - eng
KW - finite dimensional representations; Hecke algebra; split reductive group; principal series representation; square integrability
UR - http://eudml.org/doc/82464
ER -

References

top
  1. [1] J. D. ADLER, Refined anisotropic K-types and supercuspidal representations. Pacific Journal of Mathematics, to appear. Zbl0924.22015
  2. [2] J. D. ADLER and A. ROCHE, An intertwining result for p-adic groups. Preprint. Zbl1160.22304
  3. [3] H. BASS, Algebraic K-Theory, New York, 1968. Zbl0174.30302MR40 #2736
  4. [4] J. N. BERNSTEIN, Le centre de Bernstein (rédigé par P. Deligne). (Représentations des groupes réductifs sur un corps local, Paris, 1984, pp. 1-32). Zbl0599.22016MR86e:22028
  5. [5] J. N. BERNSTEIN and A. V. ZELEVINSKY, Induced representations of reductive p-adic groups I (Ann. Scient. Éc. Norm. Sup., (4), Vol. 10, 1977, pp. 441-472). Zbl0412.22015MR58 #28310
  6. [6] A. BOREL, Admissible representations of a semisimple group with vectors fixed under an Iwahori subgroup (Invent. Math., Vol. 35, 1976, pp. 233-259). Zbl0334.22012MR56 #3196
  7. [7] N. BOURBAKI, Groupes et Algèbres de Lie. Chap. IV, V, VI. Hermann, 1968. 
  8. [8] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local I. Données radicielles valuées (Publ. Math. I.H.E.S., Vol. 42, 1972, pp. 1-251). Zbl0254.14017MR48 #6265
  9. [9] F. BRUHAT and J. TITS, Groupes réductifs sur un corps local II. Schémas en groupes (Publ. Math. I.H.E.S., Vol. 60, 1984, pp. 1-184). Zbl0597.14041
  10. [10] C. J. BUSHNELL and P. C. KUTZKO, The admissible dual of GL(N) via compact open subgroups. Annals of Math. Studies 129, Princeton University Press, 1993. Zbl0787.22016MR94h:22007
  11. [11] C. J. BUSHNELL and P. C. KUTZKO, Semisimple types for GL(N). Preprint. Zbl0835.22009
  12. [12] C. J. BUSHNELL and P. C. KUTZKO, The admissible dual of SL(N) I (Ann. Scient. Éc. Norm. Sup., (4), Vol. 26, 1993, pp. 261-279). Zbl0787.22017MR94a:22033
  13. [13] C. J. BUSHNELL and P. C. KUTZKO, Smooth representations of reductive p-adic groups : structure theory via types. Preprint, February 1996. Zbl0911.22014
  14. [14] P. CARTIER, Representations of p-adic groups : A survey. Automorphic forms, representations and L-functions (A. Borel and W. Casselman, ed.). Proc Symposia Pure Math. XXXIII, (Providence, 1979), pp. 111-156. Zbl0421.22010MR81e:22029
  15. [15] W. CASSELMAN, The unramified principal series of p-adic groups I (Comp. Math., Vol. 40, 1980, pp. 387-406). Zbl0472.22004MR83a:22018
  16. [16] F. DIGNE and J. MICHEL, Representations of finite groups of Lie type. Cambridge University Press, 1991. Zbl0815.20014MR92g:20063
  17. [17] D. GOLDSTEIN, Hecke algebra isomorphisms for tamely ramified characters. Ph.D. thesis, University of Chicago, 1990. 
  18. [18] R. B. HOWLETT and G. I. LEHRER, Induced cuspidal representations and generalised Hecke rings (Inv. Math., Vol. 58, 1980, pp. 37-64). Zbl0435.20023MR81j:20017
  19. [19] R. HOWE with the collaboration of A. MOY, Harish-Chandra homomorphisms for p-adic groups. Regional Conference Series in Mathematics, no. 59. Providence, 1985. Zbl0593.22014MR87h:22023
  20. [20] R. HOWE, Principal series of GLn over p-adic fields (Trans. Am. Math. Soc., Vol. 177, 1973, pp. 275-286). Zbl0257.22018MR48 #6324
  21. [21] J. E. HUMPHREYS, Linear Algebraic Groups. Springer-Verlag, New York, 1975. Zbl0325.20039MR53 #633
  22. [22] J. E. HUMPHREYS, Reflection groups and Coxeter groups. Cambridge University Press, 1990. Zbl0725.20028MR92h:20002
  23. [23] N. IWAHORI and H. MATSUMOTO, On Some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups (Publ. Math. I.H.E.S., Vol. 25, 1965, pp. 5-48). Zbl0228.20015MR32 #2486
  24. [24] D. KAZHDAN and G. LUSZTIG, Proof of the Deligne-Langlands conjecture for Hecke algebras (Invent. Math., Vol. 87, 1987, pp. 153-215). Zbl0613.22004MR88d:11121
  25. [25] R. P. LANGLANDS, On the classification of representations of real algebraic groups. Representation Theory and Harmonic Analysis on Semisimple Lie Groups (P. J. Sally Jr. and D. Vogan, eds.) Mathematical Surveys and Monographs 31, 101-170. Amer. Math. Soc., Providence, Rhode Island, 1989. Zbl0741.22009MR91e:22017
  26. [26] G. LUSZTIG, Classification of unipotent representations of simple p-adic groups (Internat. Math. Res. Notices No. 11, 1995, pp. 517-589). Zbl0872.20041MR98b:22034
  27. [27] L. E. MORRIS, Tamely ramified intertwining algebras (Invent. Math., Vol. 114, 1993, pp. 1-54). Zbl0854.22022MR94g:22035
  28. [28] L. E. MORRIS, Level zero G-types. Preprint, 1994. 
  29. [29] A. MOY and G. PRASAD, Jacquet functors and unrefined minimal K-types (Comm. Math. Helv., Vol. 71, 1996, pp. 98-121). Zbl0860.22006MR97c:22021
  30. [30] M. REEDER, Nonstandard intertwining operators and the structure of unramified principal series representations (Forum. Math., Vol. 9, no. 4, 1997, pp. 457-516). Zbl0882.22020MR98j:22028
  31. [31] G. SANJE-MPACKO, Ph.D. thesis, Rutgers University, 1994. 
  32. [32] T. A. SPRINGER, Reductive Groups. Automorphic forms, representations and L-functions (A. Borel and W. Casselman, ed.). Proc. Symposia in Pure Math. XXXIII, (Providence, 1979), pp. 3-27. Zbl0416.20034MR80h:20062
  33. [33] T. A. SPRINGER and R. STEINBERG, Conjugacy Classes (Lecture Notes in Math., Vol. 131, Springer-Verlag, Berlin, 1970, pp. 167-266). Zbl0249.20024MR42 #3091
  34. [34] R. STEINBERG, Endomorphisms of linear algebraic groups (Mem. Amer. Math. Soc., No. 80, 1968). Zbl0164.02902MR37 #6288
  35. [35] R. STEINBERG, Torsion in reductive groups (Adv. Math., Vol. 15, 1975, pp. 63-92). Zbl0312.20026MR50 #7369
  36. [36] M. TADIC, Representations of p-adic symplectic groups (Comp. Math., Vol. 90, 1994, pp. 123-181). Zbl0797.22008MR95a:22025

Citations in EuDML Documents

top
  1. J.-F. Dat, Types et inductions pour les représentations modulaires des groupes p -adiques. With an appendix by Marie-France Vignéras
  2. Laure Blasco, Corinne Blondel, Types induits des paraboliques maximaux de S p 4 ( F ) et G S p 4 ( F )
  3. Thomas J. Haines, Base change for Bernstein centers of depth zero principal series blocks
  4. Laurent Clozel, Michael Harris, Richard Taylor, Automorphy for some l-adic lifts of automorphic mod l Galois representations
  5. Thomas J. Haines, Michael Rapoport, Shimura varieties with Γ 1 ( p ) -level via Hecke algebra isomorphisms: the Drinfeld case

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.