Statistical properties of topological Collet–Eckmann maps
Feliks Przytycki; Juan Rivera-Letelier
Annales scientifiques de l'École Normale Supérieure (2007)
- Volume: 40, Issue: 1, page 135-178
- ISSN: 0012-9593
Access Full Article
topHow to cite
topPrzytycki, Feliks, and Rivera-Letelier, Juan. "Statistical properties of topological Collet–Eckmann maps." Annales scientifiques de l'École Normale Supérieure 40.1 (2007): 135-178. <http://eudml.org/doc/82707>.
@article{Przytycki2007,
author = {Przytycki, Feliks, Rivera-Letelier, Juan},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {induced maps; conformal measure; mixing; topological Collet-Eckmann condition; central limit theorem; invariant measure; Hausdorff dimension; non-uniform hyperbolicity condition; rational maps},
language = {eng},
number = {1},
pages = {135-178},
publisher = {Elsevier},
title = {Statistical properties of topological Collet–Eckmann maps},
url = {http://eudml.org/doc/82707},
volume = {40},
year = {2007},
}
TY - JOUR
AU - Przytycki, Feliks
AU - Rivera-Letelier, Juan
TI - Statistical properties of topological Collet–Eckmann maps
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2007
PB - Elsevier
VL - 40
IS - 1
SP - 135
EP - 178
LA - eng
KW - induced maps; conformal measure; mixing; topological Collet-Eckmann condition; central limit theorem; invariant measure; Hausdorff dimension; non-uniform hyperbolicity condition; rational maps
UR - http://eudml.org/doc/82707
ER -
References
top- [1] Aspenberg M., The Collet–Eckmann condition for rational functions on the Riemann sphere, Ph.D. Thesis, KTH, Sweden, 2004.
- [2] Beardon A.F., Iteration of Rational Functions. Complex Analytic Dynamical Systems, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991. Zbl1120.30300MR1128089
- [3] Bernard J., Dynamique des perturbations d'un exemple de Lattès, Ph.D. Thesis, Université de Paris-Sud, 1994.
- [4] Bruin H., Keller G., Equilibrium states for S-unimodal maps, Ergodic Theory Dynam. Systems18 (1998) 765-789. Zbl0916.58020MR1645373
- [5] Bruin H., Luzzatto S., Van Strien S., Decay of correlations in one-dimensional dynamics, Ann. Sci. École Norm. Sup.36 (2003) 621-646. Zbl1039.37021MR2013929
- [6] Bruin H., Todd M., Complex maps without invariant densities, Nonlinearity19 (2006) 2929-2945. Zbl1122.37037MR2275506
- [7] Carleson L., Gamelin T., Complex Dynamics, Springer-Verlag, Berlin/New York, 1993. Zbl0782.30022MR1230383
- [8] Collet P., Eckmann J.P., Positive Liapunov exponents and absolute continuity for maps of the interval, Ergodic Theory Dynam. Systems3 (1983) 13-46. Zbl0532.28014MR743027
- [9] Denker M., Mauldin R.D., Nitecki Z., Urbański M., Conformal measures for rational functions revisited, Fund. Math.157 (1998) 161-173. Zbl0915.58041MR1636885
- [10] Denker M., Przytycki F., Urbanski M., On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems16 (1996) 255-266. Zbl0852.46024MR1389624
- [11] Denker M., Urbański M., On Sullivan's conformal measures for rational maps of the Riemann sphere, Nonlinearity4 (1991) 365-384. Zbl0722.58028MR1107011
- [12] Dinh T.C., Nguyen V.A., Sibony N., On thermodynamics of rational maps on the Riemann sphere, http://www.arxiv.org/math.DS/0603507. MR2342967
- [13] Dobbs N., Critical points, cusps and induced expansion, Doctoral Thesis, Université Paris-Sud (Orsay), 2006.
- [14] Dujardin R., Favre C., Distribution of rational maps with a preperiodic critical point, http://www.arxiv.org/math.DS/0601612. Zbl1246.37071
- [15] Gouëzel S., Vitesse de décorrélation et théorèmes limites pour les applications non uniformément dilatantes, Ph.D. Thesis, Université de Paris-Sud, 2004.
- [16] Graczyk J., Smirnov S., Collet, Eckmann and Hölder, Invent. Math.133 (1998) 69-96. Zbl0916.30023MR1626469
- [17] Graczyk J., Smirnov S., Weak expansion and geometry of Julia sets, to appear in Invent. Math. A preprint version: March 1999.
- [18] Graczyk J., Świa̧tek G., Harmonic measure and expansion on the boundary of the connectedness locus, Invent. Math.142 (2000) 605-629. Zbl1052.37041
- [19] Haydn N., Convergence of the transfer operator for rational maps, Ergodic Theory Dynam. Systems19 (1999) 657-669. Zbl0953.37006MR1695914
- [20] Ledrappier F., Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems1 (1981) 77-93. Zbl0487.28015MR627788
- [21] Ledrappier F., Quelques propriétés ergodiques des applications rationnelles, C. R. Acad. Sci. Paris299 (1984) 37-40. Zbl0567.58016MR756305
- [22] Keller G., Nowicki T., Spectral theory, zeta functions and the distribution of periodic points for Collet–Eckmann maps, Comm. Math. Phys.149 (1992) 31-69. Zbl0763.58024
- [23] Mañé R., The Hausdorff dimension of invariant probabilities of rational maps, in: Dynamical Systems, Valparaiso, 1986, Lecture Notes in Math., vol. 1331, Springer-Verlag, Berlin, 1988, pp. 86-117. Zbl0658.58015MR961095
- [24] Martens M., Distortion results and invariant Cantor sets of unimodal mappings, Ergodic Theory Dynam. Systems14 (1994) 331-349. Zbl0809.58026MR1279474
- [25] McMullen C.T., Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps, Comment. Math. Helv.75 (2000) 535-593. Zbl0982.37043MR1789177
- [26] Mauldin R.D., Urbański M., Graph Directed Markov Systems. Geometry and Dynamics of Limit Sets, Cambridge Tracts in Mathematics, vol. 148, Cambridge Univ. Press, Cambridge, 2003. Zbl1033.37025MR2003772
- [27] Milnor J., Dynamics in One Complex Variable. Introductory Lectures, Friedr. Vieweg & Sohn, Braunschweig, 1999. Zbl0946.30013MR1721240
- [28] Nowicki T., Sands D., Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math.132 (1998) 633-680. Zbl0908.58016MR1625708
- [29] Pesin Y., Senti S., Equilibrium measures for some one dimensional maps, Mosc. Math. J.5 (2005) 669-678. Zbl1109.37028MR2241816
- [30] Przytycki F., Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc.119 (1993) 309-317. Zbl0787.58037MR1186141
- [31] Przytycki F., On measure and Hausdorff dimension of Julia sets for holomorphic Collet–Eckmann maps, in: Ledrappier F., Lewowicz J., Newhouse S. (Eds.), Int. Conf. on Dynamical Systems—a tribute to R. Mañé, Montevideo, 1995, Pitman Res. Notes in Math. Series, vol. 362, Longman, Harlow, 1996, pp. 167-181. Zbl0868.58063
- [32] Przytycki F., Iterations of holomorphic Collet–Eckmann maps: Conformal and invariant measures, Trans. Amer. Math. Soc.350 (1998) 717-742. Zbl0892.58063
- [33] Przytycki F., Hölder implies CE, Astérisque261 (2000) 385-403. Zbl0939.37026MR1755448
- [34] Przytycki F., Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc.351 (1999) 2081-2099. Zbl0920.58037MR1615954
- [35] Przytycki F., Rivera-Letelier J., Smirnov S., Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math.151 (2003) 29-63. Zbl1038.37035MR1943741
- [36] Przytycki F., Rohde S., Rigidity of holomorphic Collet–Eckmann repellers, Ark. Mat.37 (1999) 357-371. Zbl1034.37026
- [37] Przytycki F., Urbański M., Fractals in the Plane, Ergodic Theory Methods, Cambridge Univ. Press, in press. Available on, http://www.math.unt.edu/~urbanski. Zbl1202.37001
- [38] Urbański M., Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc.40 (2003) 281-321. Zbl1031.37041MR1978566
- [39] Rees M., Positive measure sets of ergodic rational maps, Ann. Sci. École Norm. Sup.19 (1986) 383-407. Zbl0611.58038MR870689
- [40] Rivera-Letelier J., A connecting lemma for rational maps satisfying a no-growth condition, Ergodic Theory Dynam. Systems27 (2007) 595-636. Zbl1110.37037MR2308147
- [41] Senti S., Dimension of weakly expanding points for quadratic maps, Bull. Soc. Math. France131 (2003) 399-420. Zbl1071.37028MR2017145
- [42] Smirnov S., Symbolic dynamics and Collet–Eckmann condition, Internat. Math. Res. Notices7 (2000) 333-351. Zbl0983.37052
- [43] Sullivan D., Conformal dynamical systems, in: Geometric Dynamics, Rio de Janeiro, 1981, Lecture Notes in Math., vol. 1007, Springer-Verlag, Berlin, 1983, pp. 725-752. Zbl0524.58024MR730296
- [44] Urbański M., Measures and dimensions in conformal dynamics, Bull. Amer. Math. Soc.40 (2003) 281-321. Zbl1031.37041MR1978566
- [45] Young L.-S., Decay of correlations for certain quadratic maps, Comm. Math. Phys.146 (1992) 123-138. Zbl0760.58030MR1163671
- [46] Young L.-S., Recurrence times and rates of mixing, Israel J. Math.110 (1999) 153-188. Zbl0983.37005MR1750438
- [47] Zdunik A., Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math.99 (1990) 627-649. Zbl0820.58038MR1032883
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.