Su una congettura di Nash
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1973)
- Volume: 27, Issue: 1, page 167-185
- ISSN: 0391-173X
Access Full Article
topHow to cite
topTognoli, A.. "Su una congettura di Nash." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.1 (1973): 167-185. <http://eudml.org/doc/83628>.
@article{Tognoli1973,
author = {Tognoli, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {ita},
number = {1},
pages = {167-185},
publisher = {Scuola normale superiore},
title = {Su una congettura di Nash},
url = {http://eudml.org/doc/83628},
volume = {27},
year = {1973},
}
TY - JOUR
AU - Tognoli, A.
TI - Su una congettura di Nash
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1973
PB - Scuola normale superiore
VL - 27
IS - 1
SP - 167
EP - 185
LA - ita
UR - http://eudml.org/doc/83628
ER -
References
top- [1] B. Malgr Ange, Sur les functions differentiables et les ensembles analytiques, Bull. Soc. Math. Franco91 (1963) pagg. 113-127. Zbl0113.06302MR152673
- [2] J.P. Serre, Ueorrtetrie algebrique et geornetrie analytique, Ann. Inst. Fourier t. 6 (1955-56) pagg. 1-42. Zbl0075.30401MR82175
- [3] B. Malgrange, Division des distribution, I-IVSeminaire Schwartz (1959-1960) n. 21-25.
- [4] R. Narasimhan, Analysís on real and complex manifolds, Masson e Cie (1968). Zbl0188.25803MR251745
- [5] A. Tognoli, Le varietà analitiche reaLi corrce spazi onrogerrei, Bollettino dell'U M, I (4). N. 3 (1968) pagg. 422-426. Zbl0159.25101MR231406
- [6] Whitney, Analytic extension of differentiable functions defined on closed seta, Trans. Amer Math. Sac.36 no 1 (1934) pagg. 63-89. Zbl0008.24902MR1501735JFM60.0217.01
- [7] Hodge And Pedoe, Methodes of algebraie geometry, Cambridge University press (1952). Zbl0055.38705
- [8] F. Lazzeri - A. Tognoli, Aloune proprietà degli spazi algebrici, Annali Sc. Nor. Sup. di Pisa, Vol. XXIV, (1970), pagg. 597-632. Zbl0205.25201MR292827
- [9] R. Thom, Quelques proprietes globales des varietes differentiablesCom. Math. Holvetici (1954) pagg. 17-86. Zbl0057.15502MR61823
- [10] H. Whitney, Differentiable manifolds, Annals of Math. Vol. 37 (1936) pagg. 647-680. Zbl0015.32001JFM62.1454.01
- [11] J. Nash, Real algebraic manifolds, Annals of Math. Vol. 56 (1952) pagg. 405-421. Zbl0048.38501MR50928
- [12] A.H. Wallace, Algebraic approximation of manifolds, Proc. London Math. Soc. (3) 7 (1957) pagg. 196-210. Zbl0081.37802MR87205
- [13] J. Milnor, On the Stielfel- Whitney numbers of complex manifolds and of spin maraifoldsTolrology Vol. 3 (1965) pagg. 223-230. Zbl0132.19601MR180977
Citations in EuDML Documents
top- Jean-Jacques Risler, Sur l'anneau des fonctions de Nash globales
- Selman Akbulut, Laurence Taylor, A topological resolution theorem
- Andrew John Sommese, Real algebraic spaces
- Lucia Beretta, Alberto Tognoli, Some basic facts in algebraic geometry on a non algebraically closed field
- Wojciech Kucharz, Santiago R. Simanca, Codimension two transcendental submanifolds of projective space
- Riccardo Ghiloni, On the space of real algebraic morphisms
- Miguel Abánades, Wojciech Kucharz, Algebraic equivalence of real algebraic cycles
- Alberto Tognoli, Approximation theorems and Nash conjecture
- R. Benedetti, M. Dedò, Counterexamples to representing homology classes by real algebraic subvarieties up to homeomorphism
- F. Broglia, A. Tognoli, Approximation of -functions without changing their zero-set
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.