Cohomologie de S L n et valeurs de fonctions zêta aux points entiers

Armand Borel

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1977)

  • Volume: 4, Issue: 4, page 613-636
  • ISSN: 0391-173X

How to cite

top

Borel, Armand. "Cohomologie de $SL_n$ et valeurs de fonctions zêta aux points entiers." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (1977): 613-636. <http://eudml.org/doc/83764>.

@article{Borel1977,
author = {Borel, Armand},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {fre},
number = {4},
pages = {613-636},
publisher = {Scuola normale superiore},
title = {Cohomologie de $SL_n$ et valeurs de fonctions zêta aux points entiers},
url = {http://eudml.org/doc/83764},
volume = {4},
year = {1977},
}

TY - JOUR
AU - Borel, Armand
TI - Cohomologie de $SL_n$ et valeurs de fonctions zêta aux points entiers
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1977
PB - Scuola normale superiore
VL - 4
IS - 4
SP - 613
EP - 636
LA - fre
UR - http://eudml.org/doc/83764
ER -

References

top
  1. [1] E. Artin - J. Tate, Class field theory, Benjamin, New York, 1967. Zbl0176.33504MR223335
  2. [2] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Annals of Math. (2), 57 (1953), pp. 115-207. Zbl0052.40001MR51508
  3. [3] A. Borel, A spectral sequence for complex analytic bundles, Appendix 2 in F. HIRZEBRUCH, Topological methods in algebraic geometry, 3rd ed., Springer (1966), pp. 202-217. 
  4. [4] A. Borel, Stable real cohomological of arithmetic groups, Annales E.N.S. (4), 7 (1974), pp. 235-272. Zbl0316.57026MR387496
  5. [5] A. Borel, Cohomology of arithmetic groups, Proc. Int. Congress Math. Van-couver1974, vol. 1, pp. 435-442. Zbl0338.20051MR578905
  6. [6] A. Borel - F. Hirzebruch, Characteristic classes and homogeneous spaces - I, Amer. Jour. Math., 80 (1958), pp. 458-536; II, ibid., 81 (1959), pp. 315-382. Zbl0097.36401MR102800
  7. [7] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 7, 8, Act. Sci. Ind.1364, Hermann éd., Paris, 1975. MR453824
  8. [8] G. Hochschild - J.-P. Serre, Cohomology of Lie algebras, Annals of Math. (2), 57 (1953), pp. 591-603. Zbl0053.01402MR54581
  9. [9] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France, 78 (1950), pp. 65-127. Zbl0039.02901MR36511
  10. [10] J.-L. Koszul, Sur un type d'algèbres différentielles en rapport avec la transgression, Coll. Topologie algébrique, Bruxelles1950, G. Thone, Liège, 1951, pp. 73-81. Zbl0045.30801MR42428
  11. [11] J. Leray, Sur l'homologie des groupes de Lie, des espaces homogènes et des espaces fibrés principaux, Coll. Topologie algébrique, Bruxelles1950, G. Thone, Liège1951, pp. 101-115. Zbl0042.41801MR41148
  12. [12] S. Lichtenbaum, Values of zeta-functions, étale cohomology, and algebraic K-theory, Algebraic K-theory - II, Springer Lecture Notes in Mathematics, 342 (1973), pp. 489-501. Zbl0284.12005MR406981
  13. [13] T Ono, Algebraic groups and discontinuous groups, Nagoya Math. Jour., 27 (1966), pp. 279-322. Zbl0166.29802MR199193
  14. [14] J.-P. Serre, Corps locaux, Act. Sci. Ind.1296, Hermann, Paris1966. Zbl0137.02601MR354618
  15. [15] A. Weil, Adeles and algebraic groups, Notes by M. Demazure and T. Ono, Institute for Advanced Study, Princeton, N.J., 1961. MR670072
  16. [16] A. Weil, Basic number theory, Grund. Math. Wiss., 144, Springer1973. Zbl0267.12001MR427267

Citations in EuDML Documents

top
  1. Joseph Oesterlé, Polylogarithmes
  2. Bjørn Jahren, K-theory, flat bundles and the Borel classes
  3. Marie José Bertin, Fonction zêta d’Epstein et dilogarithme de Bloch-Wigner
  4. Christophe Soulé, Régulateurs
  5. Jun Yang, On the real cohomology of arithmetic groups and the rank conjecture for number fields
  6. Pierre Deligne, Alexander B. Goncharov, Groupes fondamentaux motiviques de Tate mixte
  7. Saad El Boukhari, A twisted class number formula and Gross's special units over an imaginary quadratic field
  8. Rob de Jeu, Zagier’s conjecture and Wedge complexes in algebraic K -theory
  9. Georg Tamme, Karoubi’s relative Chern character and Beilinson’s regulator
  10. Benjamin Schraen, Représentations localement analytiques de GL 3 ( p )

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.