Further qualitative properties for elliptic equations in unbounded domains
Henri Berestycki; Luis Caffarelli; Louis Nirenberg
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 1-2, page 69-94
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBerestycki, Henri, Caffarelli, Luis, and Nirenberg, Louis. "Further qualitative properties for elliptic equations in unbounded domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 69-94. <http://eudml.org/doc/84296>.
@article{Berestycki1997,
author = {Berestycki, Henri, Caffarelli, Luis, Nirenberg, Louis},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {1-2},
pages = {69-94},
publisher = {Scuola normale superiore},
title = {Further qualitative properties for elliptic equations in unbounded domains},
url = {http://eudml.org/doc/84296},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Berestycki, Henri
AU - Caffarelli, Luis
AU - Nirenberg, Louis
TI - Further qualitative properties for elliptic equations in unbounded domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 69
EP - 94
LA - eng
UR - http://eudml.org/doc/84296
ER -
References
top- [1] S.B. Angenent, Uniqueness of the solution of a semilinear boundary value problem, Math. Ann.272 (1985), 129-138. Zbl0576.35044MR794096
- [2] H. Berestycki - L. Nirenberg, On the method of moving planes and the sliding method, Boletim Soc. Brasil. de Mat. Nova Ser.22 (1991), 1-37. Zbl0784.35025MR1159383
- [3] H. Berestycki - L. Caffarelli - L. Nirenberg, Symmetry for Elliptic Equations in a Halfspace, in "Boundary value problems for partial differential equations and applications", volume dedicated to E. Magenes, J. L. Lions et al., ed., Masson, Paris (1993), 27-42. Zbl0793.35034MR1260436
- [4] H. Berestycki - L. Caffarelli - L. Nirenberg, Monotonicity for elliptic equations in an unbounded Lipschitz domain, Comm. Pure Appl. Math.50 (1997), 1089-1112. Zbl0906.35035MR1470317
- [5] H. Berestycki - L. Caffarelli - L. Nirenberg, Inequalities for second order elliptic equations with applications to unbounded domains I, Duke Math. J.81 (1996), 467-494. Zbl0860.35004MR1395408
- [6] H. Berestycki - L. Nirenberg - S.R.S. Varadhan, The principal eigenvalue and maximum principle for second order elliptic operators in general domains, Comm. Pure Applied Math.47 (1994), 47-92. Zbl0806.35129MR1258192
- [7] J. Busca, Existence Results for Bellman Equations and Maximum Principles in Unbounded Domains, preprint. Zbl0961.35021MR1720774
- [8] L. Caffarelli - N. Garofalo - F. Segala, A gradient bound for entire solutions of quasi-linear equations and its consequences, Comm. Pure Appl. Math.47 (1994), 1457-1473. Zbl0819.35016MR1296785
- [9] PH. Clément - G. Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Annali di Pisa, Ser. 414 (1987), 97-121. Zbl0662.35045MR937538
- [10] E.N. Dancer, Some notes on the method of moving planes, Bull. Australian Math. Soc.46 (1992), 425-434. Zbl0777.35005MR1190345
- [11] E. De Giorgi, Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Natur. (3) 3 (1957), 25-43. Zbl0084.31901MR93649
- [12] E. De Giorgi, Convergence Problems for Functionals and Operators, Proc. Int. Meeting on Recent Methods in Nonlinear Analysis, E. De Giorgi, E. Magenes and U. Mosco eds., Pitagora Ed., Bologna (1979), 131-188 Zbl0405.49001MR533166
- [13] M. Esteban - P.L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Royal Soc. EdinburghA93 (1982), 1-14. Zbl0506.35035MR688279
- [14] N. Ghoussoub - C. Gui, On a Conjecture of De Giorgi and some Related Problems, preprint. MR1637919
- [15] B. Gidas - W.M. Ni - L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys.68 (1979), 209-243. Zbl0425.35020MR544879
- [16] D. Gilbarg - S.N. Trudinger, "Elliptic Partial Differential Equations of Second Order", 2nd ed., Springer Verlag, 1983. Zbl0562.35001MR737190
- [17] L. Modica, A gradient bound and a Liouville theorem for nonlinear Poisson equations, Comm. Pure Appl. Math.38 (1985), 679-684. Zbl0612.35051MR803255
- [18] L. Modica - S. Mortola, Some entire solutions in the plane of nonlinear Poisson equations, Bollettino U.M.I.B5-17 (1980), 614-622. Zbl0448.35044MR580544
- [19] J. Moser, On Harnack's theorem for elliptic differental equations, Comm. Pure Appl. Math.14 (1961), 577-591. Zbl0111.09302MR159138
- [20] M.H. Protter - H.F. Weinberger, "Maximum Principles in Differential Equations", Prentice-Hall, Englewood Cliffs, New Jersey, 1967. Zbl0153.13602MR219861
- [21] H. Tehrani, Doctoral Thesis, Courant Institute, 1994.
Citations in EuDML Documents
top- E. N. Dancer, Shusen Yan, A minimization problem associated with elliptic systems of Fitz–Hugh–Nagumo type
- Luisa Moschini, New Liouville theorems for linear second order degenerate elliptic equations in divergence form
- Alberto Farina, Simmetria delle soluzioni di equazioni ellittiche semilineari in
- Luís Almeida, Lucio Damascelli, Yuxin Ge, A few symmetry results for nonlinear elliptic PDE on noncompact manifolds
- Alberto Farina, Berardino Sciunzi, Enrico Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach
- Jean Dolbeault, Régis Monneau, On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.