Infinitesimal variations of hodge structure (I)
James Carlson; Mark Green; Phillip Griffiths; Joe Harris
Compositio Mathematica (1983)
- Volume: 50, Issue: 2-3, page 109-205
- ISSN: 0010-437X
Access Full Article
topHow to cite
topCarlson, James, et al. "Infinitesimal variations of hodge structure (I)." Compositio Mathematica 50.2-3 (1983): 109-205. <http://eudml.org/doc/89624>.
@article{Carlson1983,
author = {Carlson, James, Green, Mark, Griffiths, Phillip, Harris, Joe},
journal = {Compositio Mathematica},
keywords = {IVHS; generic polarized Hodge structure; infinitesimal variation of Hodge structure; infinitesimal Schottky relations; moduli of curves; Gauss linear system; Jacobian system; Torelli theorem for cubic hypersurfaces},
language = {eng},
number = {2-3},
pages = {109-205},
publisher = {Martinus Nijhoff Publishers},
title = {Infinitesimal variations of hodge structure (I)},
url = {http://eudml.org/doc/89624},
volume = {50},
year = {1983},
}
TY - JOUR
AU - Carlson, James
AU - Green, Mark
AU - Griffiths, Phillip
AU - Harris, Joe
TI - Infinitesimal variations of hodge structure (I)
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 50
IS - 2-3
SP - 109
EP - 205
LA - eng
KW - IVHS; generic polarized Hodge structure; infinitesimal variation of Hodge structure; infinitesimal Schottky relations; moduli of curves; Gauss linear system; Jacobian system; Torelli theorem for cubic hypersurfaces
UR - http://eudml.org/doc/89624
ER -
References
top- [1] R. Accola: On Castelnuovo's inequality for algebraic curves I. Trans. AMS.251 (1979) 357-373. Zbl0417.14021MR531984
- [2] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris: Topics in the Theory of Algebraic Curves, Princeton Univ. Press, (to appear). Zbl0559.14017
- [3] L. Bers: Finite dimensional Teichmüller spaces and generalizations. Bull. AMS.5 (1981) 131-172. Zbl0485.30002MR621883
- [4] J. Carlson and P. Griffiths: Infinitesimal variations of Hodge structure and the global Torelli problem. Journees de geometrie algebrique d'Angers, Sijthoff and Noordhoff (1980) 51-76. Zbl0479.14007MR605336
- [5] F. Catanese: The moduli and global period mapping of surfaces with K2 = pg = 1. Comp. Nath.41 (1980) 401-414. Zbl0444.14008MR589089
- [6] E. Cattani and A. Kaplan: The monodromy weight filtration for a several variables degeneration of Hodge structures of weight twoInvent. Math.52 (1979) 131-142. Zbl0408.32005MR536076
- [7] K. Chakiris: Counter examples to global Torelli for certain simply connected surfaces. Bull. AMS.2 (1980) 297-299. Zbl0432.32014MR555265
- [8] H. Clemens: Degenerations of Kahler manifolds. Duke Math. J.44 (1977) 215-290. Zbl0353.14005MR444662
- [9] M. Cornalba and P. Griffiths: Some transcendental aspects of algebraic geometry. Proceedings of symposia in Pure Mathematics Volume 29 (1975), A.M.S. Zbl0309.14007MR419438
- [10] P. Deligne: Théorie de Hodge I, II, III, Actes de Congrès international des Mathematiciens (Nice, 1970), Gauthier-Villars, 1971, 1, pp. 425-430; Publ. Math. I.H.E.S.40 (1971) 5-58; Publ. Math. I.H.E.S.44 (1974) 5-78. MR441965
- [11] P. Deligne and D. Mumford: The irreducibility of the space of curves of given genus. Publ. Math. I.H.E.S. 36 (1969) 75-110. Zbl0181.48803MR262240
- [12] F. Elzein and S. Zucker: Extendability of the Abel-Jacobi map. To appear.
- [13] R. Friedman: Hodge theory, degenerations, and the global Torelli problem. Thesis, Harvard University, 1981.
- [14] R. Friedman and R. Smith: The generic Torelli theorem for the Prym map. Invent. Math.67 (1982) 473-490. Zbl0506.14042MR664116
- [15] T. Fujita: On Kähler fiber spaces over curves. J. Math. Soc. Japan30 (1978) 779-794. Zbl0393.14006MR513085
- [16] P. Griffiths: Periods of integrals on algebraic manifolds. Bull. Amer. Math. Soc.75 (1970) 228-296. Zbl0214.19802MR258824
- [ 17] P. Griffiths and W. Schmid: Recent developments in Hodge theory: a discussion of techniques and results. In: Discrete Subgroups of Lie Groups and Applications to Moduli, Oxford1975. Zbl0355.14003MR419850
- [18] P. Griffiths and W. Schmid: Locally homogeneous complex manifolds. Acta Math.123 (1970) 253-302. Zbl0209.25701MR259958
- [19] P. Griffiths: Periods of integrals on algebraic manifolds I and II. Amer. J. Math.90 (1968) 568-626 and 805-865. Zbl0183.25501
- [20] P. Griffiths and J. Harris: Principles of Algebraic Geometry, John Wiley, 1978. Zbl0408.14001MR507725
- [21] P. Griffiths: Periods of integrals on algebraic manifolds III. Publ. Math. I.H.E.S.38 (1970) 125-180. Zbl0212.53503MR282990
- [22] P. Griffiths: Periods of certain rational integrals. Ann. Math.90 (1969) 460-541. Zbl0215.08103MR260733
- [23] P. Griffiths: A theorem concerning the differential equations satisfied by normal functions associated to algebraic cycles. Amer. J. Math.101 (1979) 94-131. Zbl0453.14001MR527828
- [24] P. Griffiths: On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry. Duke Math. J.41 (1974) 775-814. Zbl0294.53034MR410607
- [25] P. Griffiths: and J. Harris: Residues and zero-cycles on an algebraic variety. Ann. Math.108 (1978) 461-505. Zbl0423.14001MR512429
- [26] A. Grothendieck: On the deRham cohomology of algebraic varieties. Publ. Math. I.H.E.S.29 (1966) 95-103. Zbl0145.17602
- [27] W.V.D. Hodge: The Theory and Applications of Harmonic Integrals, Cambridge University Press, 1941. Zbl0048.15702MR3947
- [28] Y. Kawamata: Characterization of abelian varieties. Comp. Math.43 (1981) 253-276. Zbl0471.14022MR622451
- [29] K. Kodaira and D. Spencer: On deformations of complex analytic structures, I and II. Ann. Math.67 (1958) 328-466. Zbl0128.16901MR112154
- [30] K. Kodaira: A theorem of completeness of characteristic systems for analytic families of compact subvarities of complex manifolds. Ann. Math.75 (1962) 146-162. Zbl0112.38404MR133841
- [31] M. Kuranishi: New proof for the existence of locally complete families of algebraic structures. In: Proceedings of the Conference on Complex Analysis, Minneapolis1964, NY, Springer-Verlag, 1965. Zbl0144.21102MR176496
- [32] S. Lefschetz: L'Analysis Situs et la Geometrie Algebrique, Paris, Gauthier-Villars, 1924. JFM50.0663.01
- [33] D. Lieberman: Higher Picard varieties. Amer. J. Math.90 (1968) 1165-1199. Zbl0183.25401MR238857
- [34] D. Lieberman: On the module of intermediate Jacobians. Amer. J. Math.91 (1969) 671-682. Zbl0187.18701MR257076
- [35] Y. Manin: Correspondence, motifs and monoidal transformations. Math. USSR- Sbornik6 (1968) 439-470. Zbl0199.24803
- [36] B. Moishezon: Algebraic homology classes on algebraic varieties. Izv. Akad. Nauk.31 (1967) 225-268. Zbl0162.52503MR213351
- [37] D. Mumford: Geometric Invariant Theory, Springer-Verlag1966. Zbl0147.39304MR214602
- [38] F. Oort and J. Steenbrink: On the local Torelli problem for algebraic curves. In: Journeés de geometrie algébrique d'Angers, RockvilleSijthoff & Noordhoff (1980). Zbl0444.14007MR605341
- [39] C. Peters and J. Steenbrink: Infinitesimal variation of Hodge structure. Notes from Leyden University, 1980.
- [40] A. Piateski-Shapiro and I. Safarevich: A Torelli theorem for algebraic surfaces of type K-3. Izv. Akad. Nauk.35 (1971) 530-572. Zbl0219.14021
- [41] E. Picard and G. Simart: Theorie des fanctions algébriques de deux variables independantes, Paris, Gauthier-Villars1897 and 1906; and Bronx, NY, Chelsea1971. JFM28.0327.01
- [42] B. Saint-Donat: On Petri's analysis of the linear system of quadrics through a canonical curve. Math. Ann.206 (1973) 157-175. Zbl0315.14010MR337983
- [43] J. Scherk: On the monodromy theorem for isolated hypersurface singularities. Invent. Math.58 (1980) 289-301. Zbl0432.32010MR571577
- [44] W. Schmid: Variations of Hodge structures: the singularities of the period mapping. Invent. Math.22 (1973) 211-319. Zbl0278.14003
- [45] J.-P. Serre: Faisceaux algébriques cohérents. Ann. Math.61 (1955) 197-278. Zbl0067.16201MR68874
- [46] J. Steenbrink: Limits of Hodge structures. Invent. Math.31 (1976) 229-257. Zbl0303.14002MR429885
- [47] A. Todorov: Surfaces of general type with pg = 1 and (K.K) = 1 (I). Ann. Ec. Norm. Sup.13 (1980) 1- 21. Zbl0478.14030
- [48] L. Tu: Variation of Hodge structure and the local Torelli problem. Thesis, Harvard University, 1979.
- [49] A. Weil: On Picard varieties. Amer. J. Math.74 (1952) 865-894. Zbl0048.38302MR50330
- [50] S. Zucker: Generalized and Intermediate Jacobians and the theorem on normal functions. Invent. Math.33 (1976) 185-222. Zbl0329.14008MR412186
Citations in EuDML Documents
top- Mark L. Green, The period map for hypersurface sections of high degree of an arbitrary variety
- Ron Donagi, Generic torelli for projective hypersurfaces
- Elisabetta Colombo, Gian Pietro Pirola, Alfonso Tortora, Hodge-gaussian maps
- Kęstutis Ivinskis, A variational Torelli theorem for cyclic coverings of high degree
- Phillip Griffiths, Joe Harris, Infinitesimal variations of hodge structure (II) : an infinitesimal invariant of hodge classes
- Hubert Flenner, The infinitesimal M. Noether theorem for singularities
- Kazuhiro Konno, On the variational Torelli problem for complete intersections
- Rita Pardini, On the period map for abelian covers of projective varieties
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.