The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be an inverse semigroup with the set of idempotents and be an appropriate group homomorphic image of . In this paper we find a one-to-one correspondence between two cohomology groups of the group algebra and the semigroup algebra with coefficients in the same space. As a consequence, we prove that is amenable if and only if is amenable. This could be considered as the same result of Duncan and Namioka [5] with another method which asserts that the inverse semigroup is amenable...
In this paper, we introduce multi-Jensen-cubic mappings and unify the system of functional equations defining the multi-Jensen-cubic mapping to a single equation. Applying a fixed point theorem, we establish the generalized Hyers-Ulam stability of multi-Jensen-cubic mappings. As a known outcome, we show that every approximate multi-Jensen-cubic mapping can be multi-Jensen-cubic.
In the current work, a new notion of -weak amenability of Banach algebras using homomorphisms, namely --weak amenability is introduced. Among many other things, some relations between --weak amenability of a Banach algebra and , the Banach algebra of matrices with entries from , are studied. Also, the relation of this new concept of amenability of a Banach algebra and its unitization is investigated. As an example, it is shown that the group algebra is ()--weakly amenable for any...
We find some relations between module biprojectivity and module biflatness of Banach algebras and and their projective tensor product . For some semigroups , we study module biprojectivity and module biflatness of semigroup algebras .
For a completely contractive Banach algebra , we find conditions under which the completely bounded multiplier algebra is a dual Banach algebra and the operator amenability of is equivalent to the operator Connes-amenability of . We also show that, in this case, these are equivalent to the existence of a normal virtual operator diagonal.
Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.
In this paper, we investigate the general solution and Hyers–Ulam–Rassias stability of a new mixed type of additive and quintic functional equation of the form [...] f(3x+y)−5f(2x+y)+f(2x−y)+10f(x+y)−5f(x−y)=10f(y)+4f(2x)−8f(x)
in the set of real numbers.
The generalized notion of weak amenability, namely -weak amenability, where are continuous homomorphisms on a Banach algebra , was introduced by Bodaghi, Eshaghi Gordji and Medghalchi (2009). In this paper, the -weak amenability on the measure algebra , the group algebra and the Segal algebra , where is a locally compact group, are studied. As a typical example, the -weak amenability of a special semigroup algebra is shown as well.
Download Results (CSV)