Écoulements à faible régularité pour un fluide compressible visqueux en une dimension d'espace
Soit , , , et les variables usuelles qui décrivent l’état d’un fluide en coordonnées eulériennes. Le domaine physique occupé par le fluide est
Lorsque tous les champs caractéristiques d’un système hyperbolique riche sont linéairement dégénérés, les opérateurs résolvants sont bien définis et opèrent sur l’ensemble des solutions de certains systèmes d’équations différentielles ordinaires. Celles-ci peuvent être implicites ou explicites. Dans le cas implicite, on montre que toutes les solutions sont presque-périodiques; de plus elles seront toutes périodiques pourvu que l’une d’entre elles le soit. Dans le cas explicite, on définit un opérateur...
Nous considérons ici des solutions particulières des systèmes paraboliques de lois de conservation dans le domaine ou bien pour :
Nous faisons l’hypothèse que le système réduit est hyperbolique. Notre but est la description de l’interaction d’ondes simples, mono-dimensionnelles, le plus souvent deux ondes exactement. L’une d’elle, au moins, est une onde de choc (pour le système réduit) visqueuse (pour le système parabolique). Il y a donc
Pour un système parabolique de lois de conservation, nous considérons le problème mixte, dans le domaine . Pour une condition de Dirichlet, le système admet en général des solutions stationnaires , qui tendent vers une limite en . Ce sont les profils des couches limites, dans l’approximation du second ordre, pour le système hyperbolique du premier ordre sous-jacent. La stabilité de cette couche limite est liée à la stabilité linéaire asymptotique de . On étudie celle-ci au moyen d’une fonction d’Evans,...
A powerfull method has been developped in [2] for the study of -stability of travelling waves in conservation laws or more generally in equations which display -contractivity, maximum principle and mass conservation. We recall shortly the general procedure. We also show that it partly applies to the waves of a model of radiating gas. These waves have first been studied by Kawashima and Nishibata [5,6] in a different framework. Therefore, shock fronts for this model are stable under mild perturbations....
We are concerned with a strictly hyperbolic system of conservation laws u + f(u) = 0, where u runs in a region Ω of R, such that two of the characteristic fields are genuinely non-linear whereas the other ones are of Blake Temple's type. We begin with the case p = 3 and show, under more or less technical assumptions, that the approximate solutions (u) given either by the vanishing viscosity method or by the Godunov scheme converge to weak entropy solutions as ε goes to 0. The first step consists...
The semi-group associated with the Cauchy problem for a scalar conservation law is known to be a contraction in . However it is not a contraction in for any . Leger showed in [] that for a convex flux, it is however a contraction in up to a suitable shift. We investigate in this paper whether such a contraction may happen for systems. The method is based on the relative entropy method. Our general analysis leads us to the new geometrical notion of systems. We treat in details two examples:...
Page 1