The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 20 of 20

Showing per page

Order by Relevance | Title | Year of publication

Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains

Jean-Pierre ConzeAlbert Raugi — 2003

ESAIM: Probability and Statistics

We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet” condition and apply it to a class of transition operators. This gives the convergence of the series k 0 k r P k f , r , under some regularity assumptions and implies the central limit theorem with a rate in n - 1 2 for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.

On the ergodic decomposition for a cocycle

Jean-Pierre ConzeAlbert Raugi — 2009

Colloquium Mathematicae

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

Almost everywhere convergence of convolution powers on compact abelian groups

Jean-Pierre ConzeMichael Lin — 2013

Annales de l'I.H.P. Probabilités et statistiques

It is well-known that a probability measure μ on the circle 𝕋 satisfies μ n * f - f d m p 0 for every f L p , every (some) p [ 1 , ) , if and only if | μ ^ ( n ) | l t ; 1 for every non-zero n ( μ is strictly aperiodic). In this paper we study the a.e. convergence of μ n * f for every f L p whenever p g t ; 1 . We prove a necessary and sufficient condition, in terms of the Fourier–Stieltjes coefficients of μ , for the strong sweeping out property (existence of a Borel set B with lim sup μ n * 1 B = 1 a.e. and lim inf μ n * 1 B = 0 a.e.). The results are extended to general compact Abelian groups G with Haar...

Régularité des bases d'ondelettes et mesures ergodiques.

Albert CohenJean-Pierre Conze — 1992

Revista Matemática Iberoamericana

Nous reprenons la construction des bases orthonormées d'ondelettes à partir des filtres miroirs en quadrature tel qu'elle apparaît dans [4]. Nous montrons que leur régularité est liée à une mesure invariante pour la transformation ω → 2ω mod-2π. Cette méthode permet d'obtenir le facteur exact qui relie asymptotiquement la régularité des ondelettes constriutes dans [4] à la taille de leur support.

Convergence of iterates of a transfer operator, application to dynamical systems and to Markov chains

Jean-Pierre ConzeAlbert Raugi — 2010

ESAIM: Probability and Statistics

We present a spectral theory for a class of operators satisfying a weak “Doeblin–Fortet" condition and apply it to a class of transition operators. This gives the convergence of the series ∑, r , under some regularity assumptions and implies the central limit theorem with a rate in n - 1 2 for the corresponding Markov chain. An application to a non uniformly hyperbolic transformation on the interval is also given.

Page 1 Next

Download Results (CSV)