Currently displaying 1 – 20 of 35

Showing per page

Order by Relevance | Title | Year of publication

Tietze Extension Theorem for n-dimensional Spaces

Karol Pąk — 2014

Formalized Mathematics

In this article we prove the Tietze extension theorem for an arbitrary convex compact subset of εn with a non-empty interior. This theorem states that, if T is a normal topological space, X is a closed subset of T, and A is a convex compact subset of εn with a non-empty interior, then a continuous function f : X → A can be extended to a continuous function g : T → εn. Additionally we show that a subset A is replaceable by an arbitrary subset of a topological space that is homeomorphic with a convex...

Flexary Operations

Karol Pąk — 2015

Formalized Mathematics

In this article we introduce necessary notation and definitions to prove the Euler’s Partition Theorem according to H.S. Wilf’s lecture notes [31]. Our aim is to create an environment which allows to formalize the theorem in a way that is as similar as possible to the original informal proof. Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [30].

Bertrand’s Ballot Theorem

Karol Pąk — 2014

Formalized Mathematics

In this article we formalize the Bertrand’s Ballot Theorem based on [17]. Suppose that in an election we have two candidates: A that receives n votes and B that receives k votes, and additionally n ≥ k. Then this theorem states that the probability of the situation where A maintains more votes than B throughout the counting of the ballots is equal to (n − k)/(n + k). This theorem is item #30 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/....

Topological Manifolds

Karol Pąk — 2014

Formalized Mathematics

Let us recall that a topological space M is a topological manifold if M is second-countable Hausdorff and locally Euclidean, i.e. each point has a neighborhood that is homeomorphic to an open ball of E n for some n. However, if we would like to consider a topological manifold with a boundary, we have to extend this definition. Therefore, we introduce here the concept of a locally Euclidean space that covers both cases (with and without a boundary), i.e. where each point has a neighborhood that is...

Brouwer Invariance of Domain Theorem

Karol Pąk — 2014

Formalized Mathematics

In this article we focus on a special case of the Brouwer invariance of domain theorem. Let us A, B be a subsets of εn, and f : A → B be a homeomorphic. We prove that, if A is closed then f transform the boundary of A to the boundary of B; and if B is closed then f transform the interior of A to the interior of B. These two cases are sufficient to prove the topological invariance of dimension, which is used to prove basic properties of the n-dimensional manifolds, and also to prove basic properties...

Euler’s Partition Theorem

Karol Pąk — 2015

Formalized Mathematics

In this article we prove the Euler’s Partition Theorem which states that the number of integer partitions with odd parts equals the number of partitions with distinct parts. The formalization follows H.S. Wilf’s lecture notes [28] (see also [1]). Euler’s Partition Theorem is listed as item #45 from the “Formalizing 100 Theorems” list maintained by Freek Wiedijk at http://www.cs.ru.nl/F.Wiedijk/100/ [27].

Basic Properties of Determinants of Square Matrices over a Field 1

Karol Pąk — 2007

Formalized Mathematics

In this paper I present basic properties of the determinant of square matrices over a field and selected properties of the sign of a permutation. First, I define the sign of a permutation by the requirement [...] where p is any fixed permutation of a set with n elements. I prove that the sign of a product of two permutations is the same as the product of their signs and show the relation between signs and parity of permutations. Then I consider the determinant of a linear combination of lines, the...

The Catalan Numbers. Part II 1

Karol Pąk — 2006

Formalized Mathematics

In this paper, we define sequence dominated by 0, in which every initial fragment contains more zeroes than ones. If n ≥ 2 · m and n > 0, then the number of sequences dominated by 0 the length n including m of ones, is given by the formula [...] and satisfies the recurrence relation [...] Obviously, if n = 2 · m, then we obtain the recurrence relation for the Catalan numbers (starting from 0) [...] Using the above recurrence relation we can see that [...] where [...] and hence [...] MML identifier:...

Basic Properties of the Rank of Matrices over a Field

Karol Pąk — 2007

Formalized Mathematics

In this paper I present selected properties of triangular matrices and basic properties of the rank of matrices over a field.I define a submatrix as a matrix formed by selecting certain rows and columns from a bigger matrix. That is in my considerations, as an array, it is cut down to those entries constrained by row and column. Then I introduce the concept of the rank of a m x n matrix A by the condition: A has the rank r if and only if, there is a r x r submatrix of A with a non-zero determinant,...

Small Inductive Dimension of Topological Spaces

Karol Pąk — 2009

Formalized Mathematics

We present the concept and basic properties of the Menger-Urysohn small inductive dimension of topological spaces according to the books [7]. Namely, the paper includes the formalization of main theorems from Sections 1.1 and 1.2.

The Friendship Theorem

Karol Pąk — 2012

Formalized Mathematics

In this article we prove the friendship theorem according to the article [1], which states that if a group of people has the property that any pair of persons have exactly one common friend, then there is a universal friend, i.e. a person who is a friend of every other person in the group

Affine Independence in Vector Spaces

Karol Pąk — 2010

Formalized Mathematics

In this article we describe the notion of affinely independent subset of a real linear space. First we prove selected theorems concerning operations on linear combinations. Then we introduce affine independence and prove the equivalence of various definitions of this notion. We also introduce the notion of the affine hull, i.e. a subset generated by a set of vectors which is an intersection of all affine sets including the given set. Finally, we introduce and prove selected properties of the barycentric...

Basic Properties of Metrizable Topological Spaces

Karol Pąk — 2009

Formalized Mathematics

We continue Mizar formalization of general topology according to the book [11] by Engelking. In the article, we present the final theorem of Section 4.1. Namely, the paper includes the formalization of theorems on the correspondence between the cardinalities of the basis and of some open subcover, and a discreet (closed) subspaces, and the weight of that metrizable topological space. We also define Lindelöf spaces and state the above theorem in this special case. We also introduce the concept of...

Eigenvalues of a Linear Transformation

Karol Pąk — 2008

Formalized Mathematics

The article presents well known facts about eigenvalues of linear transformation of a vector space (see [13]). I formalize main dependencies between eigenvalues and the diagram of the matrix of a linear transformation over a finite-dimensional vector space. Finally, I formalize the subspace [...] called a generalized eigenspace for the eigenvalue λ and show its basic properties.MML identifier: VECTSP11, version: 7.9.03 4.108.1028

Jordan Matrix Decomposition

Karol Pąk — 2008

Formalized Mathematics

In this paper I present the Jordan Matrix Decomposition Theorem which states that an arbitrary square matrix M over an algebraically closed field can be decomposed into the form [...] where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e. a special type of block diagonal matrix in which each block consists of Jordan blocks (see [13]).MML identifier: MATRIXJ2, version: 7.9.01 4.101.1015

Block Diagonal Matrices

Karol Pąk — 2008

Formalized Mathematics

In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.

Solutions of Linear Equations

Karol Pąk — 2008

Formalized Mathematics

In this paper I present the Kronecker-Capelli theorem which states that a system of linear equations has a solution if and only if the rank of its coefficient matrix is equal to the rank of its augmented matrix.MML identifier: MATRIX15, version: 7.8.09 4.97.1001

Abstract Simplicial Complexes

Karol Pąk — 2010

Formalized Mathematics

In this article we define the notion of abstract simplicial complexes and operations on them. We introduce the following basic notions: simplex, face, vertex, degree, skeleton, subdivision and substructure, and prove some of their properties.

Page 1 Next

Download Results (CSV)