Solutions to nonlinear Schrödinger equations may blow up in finite time. We study the influence of the introduction of a potential on this phenomenon. For a linear potential (Stark effect), the blow-up time remains unchanged, but the location of the collapse is altered. The main part of our study concerns isotropic quadratic potentials. We show that the usual (confining) harmonic potential may anticipate the blow-up time, and always does when the power of the nonlinearity is -critical. On the other...
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
We study spherical pulse like families of solutions to semilinear wave equattions in space time of dimension 1+3 as the pulses focus at a point and emerge outgoing. We emphasize the scales for which the incoming and outgoing waves behave linearly but the nonlinearity has a strong effect at the focus. The focus crossing is described by a scattering operator for the semilinear equation, which broadens the pulses. The relative errors in our approximate solutions are small in the L norm.
We consider a system of two linear conservative wave equations, with a nonlinear coupling, in space dimension three. Spherical pulse like initial data cause focusing at the origin in the limit of short wavelength. Because the equations are conservative, the caustic crossing is not trivial, and we analyze it for particular initial data. It turns out that the phase shift between the incoming wave (before the focus) and the outgoing wave (past the focus) behaves like , where stands for the wavelength....
We study numerically the semiclassical limit for the nonlinear
Schrödinger equation thanks to a modification of the Madelung
transform due to Grenier. This approach allows for the presence of
vacuum. Even if the mesh
size and the time step do not depend on the
Planck constant, we recover the position and current densities in the
semiclassical limit, with a numerical rate of convergence in
accordance with the theoretical
results, before shocks appear in the limiting Euler
equation. By using simple...
We study the interaction of (slowly modulated) high frequency waves for multi-dimensional nonlinear Schrödinger equations with Gauge invariant power-law nonlinearities and nonlocal perturbations. The model includes the Davey-Stewartson system in its elliptic-elliptic and hyperbolic-elliptic variants. Our analysis reveals a new localization phenomenon for nonlocal perturbations in the high frequency regime and allows us to infer strong instability results on the Cauchy problem in negative order Sobolev...
Download Results (CSV)