Je présenterai les résultats d’une étude microlocale détaillée du spectre joint de deux opérateurs h-pseudo-différentiels qui commutent sur une variété de dimension deux en présence d’une singularité dite «focus-focus». L’étude couvre par exemple le cas du pendule sphérique étudié par Duistermaat, ou du fond de la bouteille de champagne, mais les phénomènes observés sont universels. On en observe principalement deux: une accumulation de valeurs propres au voisinage de la singularité en par rapport...
In this talk we explain a simple treatment of the quantum Birkhoff normal form for semiclassical pseudo-differential operators with smooth coefficients. The normal form is applied to describe the discrete spectrum in a generalised non-degenerate potential well, yielding uniform estimates in the energy . This permits a detailed study of the spectrum in various asymptotic regions of the parameters , and gives improvements and new proofs for many of the results in the field. In the completely resonant...
We explore symplectic techniques to obtain long time estimates for a purely magnetic confinement in two degrees of freedom. Using pseudo-differential calculus, the same techniques lead to microlocal normal forms for the magnetic Laplacian. In the case of a strong magnetic field, we prove a reduction to a 1D semiclassical pseudo-differential operator. This can be used to derive precise asymptotic expansions for the eigenvalues at any order.
On définit les notions de feuilletages classiques et semi-classiques pour les systèmes complètement intégrables avec singularités. Les résultats de classification standard (telles les coordonnées actions-angles semi-classiques) sont rappelés. Le cas du feuilletage classique de type foyer-foyer est examiné en détail, où des nouveaux invariants semi-globaux apparaissent. Ces invariants sont identifiés dans les conditions de Bohr-Sommerfeld singulières qui donnent le spectre conjoint au voisinage d’une...
This text deals with in a semiclassical setting. Given a quantum system, the haunting question is “What interesting quantities can be discovered on the spectrum that can help to characterize the system ?” The general framework will be semiclassical analysis, and the issue is to recover the classical dynamics from the quantum spectrum. The coupling of a spin and an oscillator is a fundamental example in physics where some nontrivial explicit calculations can be done.
We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of...
Download Results (CSV)