Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Twistor operators on conformally flat spaces

Somberg, Petr — 2001

Proceedings of the 20th Winter School "Geometry and Physics"

Summary: We describe explicitly the kernels of higher spin twistor operators on standard even dimensional Euclidean space 2 l , standard even dimensional sphere S 2 l , and standard even dimensional hyperbolic space 2 l , using realizations of invariant differential operators inside spinor valued differential forms. The kernels are finite dimensional vector spaces (of the same cardinality) generated by spinor valued polynomials on 2 l , S 2 l , 2 l .

BGG sequences on spheres

Petr Somberg — 2000

Commentationes Mathematicae Universitatis Carolinae

BGG sequences on flat homogeneous spaces are analyzed from the point of view of decomposition of appropriate representation spaces on irreducible parts with respect to a maximal compact subgroup, the so called K -types. In particular, the kernels and images of all standard invariant differential operators (including the higher spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences, are described.

Symplectic twistor operator and its solution space on 2

Marie DostálováPetr Somberg — 2013

Archivum Mathematicum

We introduce the symplectic twistor operator T s in symplectic spin geometry of real dimension two, as a symplectic analogue of the Dolbeault operator in complex spin geometry of complex dimension 1. Based on the techniques of the metaplectic Howe duality and algebraic Weyl algebra, we compute the space of its solutions on 2 .

The F-method and a branching problem for generalized Verma modules associated to ( Lie G 2 , so ( 7 ) )

Todor MilevPetr Somberg — 2013

Archivum Mathematicum

The branching problem for a couple of non-compatible Lie algebras and their parabolic subalgebras applied to generalized Verma modules was recently discussed in [15]. In the present article, we employ the recently developed F-method, [10], [11] to the couple of non-compatible Lie algebras Lie G 2 i so ( 7 ) , and generalized conformal so ( 7 ) -Verma modules of scalar type. As a result, we classify the i ( Lie G 2 ) 𝔭 -singular vectors for this class of so ( 7 ) -modules.

On the composition structure of the twisted Verma modules for 𝔰𝔩 ( 3 , )

Libor KřižkaPetr Somberg — 2015

Archivum Mathematicum

We discuss some aspects of the composition structure of twisted Verma modules for the Lie algebra 𝔰𝔩 ( 3 , ) , including the explicit structure of singular vectors for both 𝔰𝔩 ( 3 , ) and one of its Lie subalgebras 𝔰𝔩 ( 2 , ) , and also of their generators. Our analysis is based on the use of partial Fourier tranform applied to the realization of twisted Verma modules as D -modules on the Schubert cells in the full flag manifold for SL ( 3 , ) .

Killing spinor-valued forms and the cone construction

Petr SombergPetr Zima — 2016

Archivum Mathematicum

On a pseudo-Riemannian manifold 𝕄 we introduce a system of partial differential Killing type equations for spinor-valued differential forms, and study their basic properties. We discuss the relationship between solutions of Killing equations on 𝕄 and parallel fields on the metric cone over 𝕄 for spinor-valued forms.

Projective structure, SL ˜ ( 3 , ) and the symplectic Dirac operator

Marie HolíkováLibor KřižkaPetr Somberg — 2016

Archivum Mathematicum

Inspired by the results on symmetries of the symplectic Dirac operator, we realize symplectic spinor fields and the symplectic Dirac operator in the framework of (the double cover of) homogeneous projective structure in two real dimensions. The symmetry group of the homogeneous model of the double cover of projective geometry in two real dimensions is ˜ ( 3 , ) .

On a new normalization for tractor covariant derivatives

Matthias HammerlPetr SombergVladimír SoučekJosef Šilhan — 2012

Journal of the European Mathematical Society

A regular normal parabolic geometry of type G / P on a manifold M gives rise to sequences D i of invariant differential operators, known as the curved version of the BGG resolution. These sequences are constructed from the normal covariant derivative ω on the corresponding tractor bundle V , where ω is the normal Cartan connection. The first operator D 0 in the sequence is overdetermined and it is well known that ω yields the prolongation of this operator in the homogeneous case M = G / P . Our first main result...

Page 1

Download Results (CSV)