Heat kernels on non-compact riemannian manifolds : a partial survey
In this talk we shall present some joint work with A. Grigory’an. Upper and lower estimates on the rate of decay of the heat kernel on a complete non-compact riemannian manifold have recently been obtained in terms of the geometry at infinity of the manifold, more precisely in terms of a kind of isoperimetric profile. The main point is to connect the decay of the norm of the heat semigroup with some adapted Nash or Faber-Krahn inequalities, which is done by functional analytic methods. We shall...
We show that the boundedness, p > 2, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.
We study the validity of the inequality for the Riesz transform when and of its reverse inequality when on complete riemannian manifolds under the doubling property and some Poincaré inequalities.
Le but de cette note est de montrer que le principe du maximum, même dans une version affaiblie, n’est pas vérifıé pour la classe des opérateurs paraboliques du type , où L est un opérateur différentiel elliptique d’ordre 2 sous forme divergence à coefficients complexes mesurables et bornés en dimension supérieure ou égale à 5. Le principe de démonstration repose sur un résultat abstrait de la théorie des semi-groupes permettant d’utiliser le contre-exemple présenté dans [MNP] à la régularité des...
Dans cet article, nous nous intéresserons à certaines propriétés des variétés riemanniennes non compactes qui ne dépendant que de leur géométrie à l'infini; pour cela, nous utiliserons un procédé de discrétisation qui associe un graph (pondéré) à une variété.
Dans cet article, nous proposons une approche très directe de différents inégalités isopérimétriques.
We introduce a new method for obtaining heat kernel on-diagonal lower bounds on non- compact Lie groups and on infinite discrete groups. By using this method, we are able to recover the previously known results for unimodular amenable Lie groups as well as for certain classes of discrete groups including the polycyclic groups, and to give them a geometric interpretation. We also obtain new results for some discrete groups which admit the structure of a semi-direct product or of a wreath product....
We study the weak type (1,1) and the -boundedness, 1 < p ≤ 2, of the so-called vertical (i.e. involving space derivatives) Littlewood-Paley-Stein functions and ℋ respectively associated with the Poisson semigroup and the heat semigroup on a complete Riemannian manifold M. Without any assumption on M, we observe that and ℋ are bounded in , 1 < p ≤ 2. We also consider modified Littlewood-Paley-Stein functions that take into account the positivity of the bottom of the spectrum. Assuming that...
Page 1