The purpose of the present paper is to study generalized M-projectively recurrent manifolds. Some geometric properties of generalized M projectively recurrent manifolds have been studied under certain curvature conditions. An application of such a manifold in the theory of relativity has also been shown. Finally, we give an example of a generalized M-projectively recurrent manifold.
The object of the present paper is to study a type of Riemannian manifold called generalized quasi-Einstein manifold. The existence of a generalized quasi-Einstein manifold have been proved by non-trivial examples.
The object of the present paper is to study almost pseudo-Z-symmetric manifolds. Some geometric properties have been studied. Next we consider conformally flat almost pseudo-Z-symmetric manifolds. We obtain a sufficient condition for an almost pseudo-Z-symmetric manifold to be a quasi Einstein manifold. Also we prove that a totally umbilical hypersurface of a conformally flat () is a manifold of quasi constant curvature. Finally, we give an example to verify the result already obtained in Section...
The object of the present paper is to study -projectively flat and -projectively flat 3-dimensional connected trans-Sasakian manifolds. Also we study the geometric properties of connected trans-Sasakian manifolds when it is projectively semi-symmetric. Finally, we give some examples of a 3-dimensional trans-Sasakian manifold which verifies our result.
Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes.
We consider a semisymmetric metric connection in an almost Kenmotsu manifold with its characteristic vector field belonging to the -nullity distribution and -nullity distribution respectively. We first obtain the expressions of the curvature tensor and Ricci tensor with respect to the semisymmetric metric connection in an almost Kenmotsu manifold with belonging to - and -nullity distribution respectively. Then we characterize an almost Kenmotsu manifold with belonging to -nullity distribution...
The object of the present paper is to study almost pseudo-conformally symmetric Ricci-recurrent manifolds. The existence of almost pseudo-conformally symmetric Ricci-recurrent manifolds has been proved by an explicit example. Some geometric properties have been studied. Among others we prove that in such a manifold the vector field corresponding to the 1-form of recurrence is irrotational and the integral curves of the vector field are geodesic. We also study some global properties of such a...
Download Results (CSV)