Currently displaying 1 – 20 of 24

Showing per page

Order by Relevance | Title | Year of publication

Duplicate inverse series relations and hypergeometric evaluations with z = 1 / 4

Wenchang Chu — 2002

Bollettino dell'Unione Matematica Italiana

The Gould-Hsu (1973) inverse series relations have been systematically applied to the research of hypergeometric identities. Their duplicate version is established and used to demonstrate several terminating F 2 3 1 / 4 -summation formulas. Further hypergeometric evaluations with the same variable are obtained through recurrence relations.

Divided differences and symmetric functions

Wenchang Chu — 1999

Bollettino dell'Unione Matematica Italiana

L'operatore di differenze multivariate è utilizzato per stabilire varie formule di somme riguardanti le funzioni simmetriche, le quali hanno uno stretto legame con le identità del «termine costante».

Jacobi's Triple Product Identity and the Quintuple Product Identity

Wenchang Chu — 2007

Bollettino dell'Unione Matematica Italiana

The simplest proof of Jacobi's triple product identity originally due to Cauchy (1843) and Gauss (1866) is reviewed. In the same spirit, we prove by means of induction principle and finite difference method, a finite form of the quintuple product identity. Similarly, the induction principle will be used to give a new proof of another algebraic identity due to Guo and Zeng (2005), which can be considered as another finite form of the quintuple product identity.

Reciprocal Formulae on Binomial Convolutions of Hagen-Rothe Type

Wenchang Chu — 2013

Bollettino dell'Unione Matematica Italiana

By means of duplicate inverse series relations, we investigate dual relations of four binomial convolution identities. Four classes of reciprocal formulae on binomial convolutions of Hagen-Rothe type are established. They reflect certain “reciprocity” on the Hagen-Rothe-like convolutions in the sense that each binomial summation involved has no closed form in general, but their sum and difference in pairs do have simple expressions in a single term of binomial coefficients.

Funzione generatrice e polinomi incompleti di Fibonacci e Lucas

Wenchang ChuValentina Vicenti — 2003

Bollettino dell'Unione Matematica Italiana

I numeri incompleti di Fibonacci e di Lucas, introdotti da Filipponi (1996), sono entrambi generalizzati in forma di polinomi. Le loro funzioni generatrici ridondanti, naturali e condizionate sono stabilite attraverso serie formali di potenze. Le funzioni generatrici relative alle sequenze di numeri dovute a Pinter e Srivastava (1999) sono contenute come casi particolari.

Inverse series relations, formal power series and Blodgett-Gessel's type binomial identities.

Chu Wenchang — 1997

Collectanea Mathematica

A pair of simple bivariate inverse series relations are used by embedding machinery to produce several double summation formulae on shifted factorials (or binomial coefficients), including the evaluation due to Blodgett-Gessel. Their q-analogues are established in the second section. Some generalized convolutions are presented through formal power series manipulation.

Page 1 Next

Download Results (CSV)