The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Lower and upper bounds for the number of solutions of p + h = P r

Diagonalization in proof complexity

Jan Krajíček (2004)

Fundamenta Mathematicae

Similarity:

We study diagonalization in the context of implicit proofs of [10]. We prove that at least one of the following three conjectures is true: ∙ There is a function f: 0,1* → 0,1 computable in that has circuit complexity 2 Ω ( n ) . ∙ ≠ co . ∙ There is no p-optimal propositional proof system. We note that a variant of the statement (either ≠ co or ∩ co contains a function 2 Ω ( n ) hard on average) seems to have a bearing on the existence of good proof complexity generators. In particular, we prove that...

Boundedness results of solutions to the equation x ′′′ + a x ′′ + g ( x ) x + h ( x ) = p ( t ) without the hypothesis h ( x ) sgn x 0 for | x | > R .

Ján Andres (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Per l'equazione differenziale ordinaria non lineare del 3° ordine indicata nel titolo, studiata da numerosi autori sotto l'ipotesi h ( x ) sgn x 0 f o r | x | > R , si dimostra l'esistenza di almeno una soluzione limitata sopprimendo l'ipotesi suddetta.

Improved upper bounds for nearly antipodal chromatic number of paths

Yu-Fa Shen, Guo-Ping Zheng, Wen-Jie HeK (2007)

Discussiones Mathematicae Graph Theory

Similarity:

For paths Pₙ, G. Chartrand, L. Nebeský and P. Zhang showed that a c ' ( P ) n - 2 2 + 2 for every positive integer n, where ac’(Pₙ) denotes the nearly antipodal chromatic number of Pₙ. In this paper we show that a c ' ( P ) n - 2 2 - n / 2 - 10 / n + 7 if n is even positive integer and n ≥ 10, and a c ' ( P ) n - 2 2 - ( n - 1 ) / 2 - 13 / n + 8 if n is odd positive integer and n ≥ 13. For all even positive integers n ≥ 10 and all odd positive integers n ≥ 13, these results improve the upper bounds for nearly antipodal chromatic number of Pₙ.

Selection principles and upper semicontinuous functions

Masami Sakai (2009)

Colloquium Mathematicae

Similarity:

In connection with a conjecture of Scheepers, Bukovský introduced properties wQN* and SSP* and asked whether wQN* implies SSP*. We prove it in this paper. We also give characterizations of properties S₁(Γ,Ω) and S f i n ( Γ , Ω ) in terms of upper semicontinuous functions

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

The largest prime factor of X³ + 2

A. J. Irving (2015)

Acta Arithmetica

Similarity:

Improving on a theorem of Heath-Brown, we show that if X is sufficiently large then a positive proportion of the values n³ + 2: n ∈ (X,2X] have a prime factor larger than X 1 + 10 - 52 .

Shifted values of the largest prime factor function and its average value in short intervals

Jean-Marie De Koninck, Imre Kátai (2016)

Colloquium Mathematicae

Similarity:

We obtain estimates for the average value of the largest prime factor P(n) in short intervals [x,x+y] and of h(P(n)+1), where h is a complex-valued additive function or multiplicative function satisfying certain conditions. Letting s q ( n ) stand for the sum of the digits of n in base q ≥ 2, we show that if α is an irrational number, then the sequence ( α s q ( P ( n ) ) ) n is uniformly distributed modulo 1.

The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian

Jean Mawhin (2006)

Journal of the European Mathematical Society

Similarity:

We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation ( | u ' | p 2 u ' ) ) ' + f ( u ) u ' + g ( x , u ) = t , when f is arbitrary and g ( x , u ) + or g ( x , u ) when | u | . The proof uses upper and lower solutions and the Leray–Schauder degree.

Positive solutions of a fourth-order differential equation with integral boundary conditions

Seshadev Padhi, John R. Graef (2023)

Mathematica Bohemica

Similarity:

We study the existence of positive solutions to the fourth-order two-point boundary value problem u ' ' ' ' ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ' ( 0 ) = u ' ( 1 ) = u ' ' ( 0 ) = 0 , u ( 0 ) = α [ u ] , where α [ u ] = 0 1 u ( t ) d A ( t ) is a Riemann-Stieltjes integral with A 0 being a nondecreasing function of bounded variation and f 𝒞 ( [ 0 , 1 ] × + , + ) . The sufficient conditions obtained are new and easy to apply. Their approach is based on Krasnoselskii’s fixed point theorem and the Avery-Peterson fixed point theorem.

E 1 -degeneration and d ' d ' ' -lemma

Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a double complex ( A , d ' , d ' ' ) , we show that if it satisfies the d ' d ' ' -lemma and the spectral sequence { E r p , q } induced by A does not degenerate at E 0 , then it degenerates at E 1 . We apply this result to prove the degeneration at E 1 of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of d ' d ' ' -lemma.

Truncatable primes and unavoidable sets of divisors

Artūras Dubickas (2006)

Acta Mathematica Universitatis Ostraviensis

Similarity:

We are interested whether there is a nonnegative integer u 0 and an infinite sequence of digits u 1 , u 2 , u 3 , in base b such that the numbers u 0 b n + u 1 b n - 1 + + u n - 1 b + u n , where n = 0 , 1 , 2 , , are all prime or at least do not have prime divisors in a finite set of prime numbers S . If any such sequence contains infinitely many elements divisible by at least one prime number p S , then we call the set S unavoidable with respect to b . It was proved earlier that unavoidable sets in base b exist if b { 2 , 3 , 4 , 6 } , and that no unavoidable set exists in base b = 5 . Now,...

Boundedness results of solutions to the equation x ′′′ + a x ′′ + g ( x ) x + h ( x ) = p ( t ) without the hypothesis h ( x ) sgn x 0 f o r | x | > R .

Ján Andres (1986)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Per l'equazione differenziale ordinaria non lineare del 3° ordine indicata nel titolo, studiata da numerosi autori sotto l'ipotesi h ( x ) sgn x 0 f o r | x | > R , si dimostra l'esistenza di almeno una soluzione limitata sopprimendo l'ipotesi suddetta.