Displaying similar documents to “On the existence and regularity of solutions of linear equations in spaces H k ( G )

Time regularity and functions of the Volterra operator

Zoltán Léka (2014)

Studia Mathematica

Similarity:

Our aim is to prove that for any fixed 1/2 < α < 1 there exists a Hilbert space contraction T such that σ(T) = 1 and | | T n + 1 - T | | ( n 1 ) . This answers Zemánek’s question on the time regularity property.

Sums of commuting operators with maximal regularity

Christian Le Merdy, Arnaud Simard (2001)

Studia Mathematica

Similarity:

Let Y be a Banach space and let S L p be a subspace of an L p space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to S ( Y ) L p ( Y ) . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and e - t B is a positive contraction...

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

Similarity:

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity,...

Problems on averages and lacunary maximal functions

Andreas Seeger, James Wright (2011)

Banach Center Publications

Similarity:

We prove three results concerning convolution operators and lacunary maximal functions associated to dilates of measures. First we obtain an H¹ to L 1 , bound for lacunary maximal operators under a dimensional assumption on the underlying measure and an assumption on an L p regularity bound for some p > 1. Secondly, we obtain a necessary and sufficient condition for L² boundedness of lacunary maximal operator associated to averages over convex curves in the plane. Finally we prove an L p ...

Maximal regularity of discrete and continuous time evolution equations

Sönke Blunck (2001)

Studia Mathematica

Similarity:

We consider the maximal regularity problem for the discrete time evolution equation u n + 1 - T u = f for all n ∈ ℕ₀, u₀ = 0, where T is a bounded operator on a UMD space X. We characterize the discrete maximal regularity of T by two types of conditions: firstly by R-boundedness properties of the discrete time semigroup ( T ) n and of the resolvent R(λ,T), secondly by the maximal regularity of the continuous time evolution equation u’(t) - Au(t) = f(t) for all t > 0, u(0) = 0, where A:= T - I. By recent...

A regularity theory for scalar local minimizers of splitting-type variational integrals

Michael Bildhauer, Martin Fuchs, Xiao Zhong (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Starting from Giaquinta’s counterexample [12] we introduce the class of splitting functionals being of ( p , q ) -growth with exponents p q &lt; and show for the scalar case that locally bounded local minimizers are of class C 1 , μ . Note that to our knowledge the only C 1 , μ -results without imposing a relation between p and q concern the case of two independent variables as it is outlined in Marcellini’s paper [15], Theorem A, and later on in the work of Fusco and Sbordone [10], Theorem 4.2.

- and -hypoellipticity of partial differential operators with constant Colombeau coefficients

Claudia Garetto (2010)

Banach Center Publications

Similarity:

We provide a deep investigation of the notions of - and -hypoellipticity for partial differential operators with constant Colombeau coefficients. This involves generalized polynomials and fundamental solutions in the dual of a Colombeau algebra. Sufficient conditions and necessary conditions for - and -hypoellipticity are given

Some equivalent metrics for bounded normal operators

Mohammad Reza Jabbarzadeh, Rana Hajipouri (2018)

Mathematica Bohemica

Similarity:

Some stronger and equivalent metrics are defined on , the set of all bounded normal operators on a Hilbert space H and then some topological properties of are investigated.

Maximal regularity for second order non-autonomous Cauchy problems

Charles J. K. Batty, Ralph Chill, Sachi Srivastava (2008)

Studia Mathematica

Similarity:

We consider some non-autonomous second order Cauchy problems of the form ü + B(t)u̇ + A(t)u = f(t ∈ [0,T]), u(0) = u̇(0) = 0. We assume that the first order problem u̇ + B(t)u = f(t ∈ [0,T]), u(0) = 0, has L p -maximal regularity. Then we establish L p -maximal regularity of the second order problem in situations when the domains of B(t₁) and A(t₂) always coincide, or when A(t) = κB(t).

Extension operators on balls and on spaces of finite sets

Antonio Avilés, Witold Marciszewski (2015)

Studia Mathematica

Similarity:

We study extension operators between spaces of continuous functions on the spaces σ ( 2 X ) of subsets of X of cardinality at most n. As an application, we show that if B H is the unit ball of a nonseparable Hilbert space H equipped with the weak topology, then, for any 0 < λ < μ, there is no extension operator T : C ( λ B H ) C ( μ B H ) .

C 1 , α regularity for elliptic equations with the general nonstandard growth conditions

Sungchol Kim, Dukman Ri (2024)

Mathematica Bohemica

Similarity:

We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on Ω . We prove the global C 1 , α regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the C 1 , α regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.

Evolution equations governed by Lipschitz continuous non-autonomous forms

Ahmed Sani, Hafida Laasri (2015)

Czechoslovak Mathematical Journal

Similarity:

We prove L 2 u ˙ ( t ) + A ( t ) u ( t ) = f ( t ) for a.e. t [ 0 , T ] , u ( 0 ) = u 0 , where the operator A ( t ) arises from a time depending sesquilinear form 𝔞 ( t , · , · ) on a Hilbert space H with constant domain V . We prove the maximal regularity in H when these forms are time Lipschitz continuous. We proceed by approximating the problem using the frozen coefficient method developed by El-Mennaoui, Keyantuo, Laasri (2011), El-Mennaoui, Laasri (2013), and Laasri (2012). As a consequence, we obtain an invariance criterion for convex and closed...

Maximal regularity of the spatially periodic Stokes operator and application to nematic liquid crystal flows

Jonas Sauer (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider the dynamics of spatially periodic nematic liquid crystal flows in the whole space and prove existence and uniqueness of local-in-time strong solutions using maximal L p -regularity of the periodic Laplace and Stokes operators and a local-in-time existence theorem for quasilinear parabolic equations à la Clément-Li (1993). Maximal regularity of the Laplace and the Stokes operator is obtained using an extrapolation theorem on the locally compact abelian group G : = n - 1 × / L to obtain an -bound...

Regularity of domains of parameterized families of closed linear operators

Teresa Winiarska, Tadeusz Winiarski (2003)

Annales Polonici Mathematici

Similarity:

The purpose of this paper is to provide a method of reduction of some problems concerning families A t = ( A ( t ) ) t of linear operators with domains ( t ) t to a problem in which all the operators have the same domain . To do it we propose to construct a family ( Ψ t ) t of automorphisms of a given Banach space X having two properties: (i) the mapping t Ψ t is sufficiently regular and (ii) Ψ t ( ) = t for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition...

Hölder continuity of bounded generalized solutions for some degenerated quasilinear elliptic equations with natural growth terms

Salvatore Bonafede (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the local Hölder continuity of bounded generalized solutions of the Dirichlet problem associated to the equation i = 1 m x i a i ( x , u , u ) - c 0 | u | p - 2 u = f ( x , u , u ) , assuming that the principal part of the equation satisfies the following degenerate ellipticity condition λ ( | u | ) i = 1 m a i ( x , u , η ) η i ν ( x ) | η | p , and the lower-order term f has a natural growth with respect to u .

Weak-type inequalities for maximal operators acting on Lorentz spaces

Adam Osękowski (2014)

Banach Center Publications

Similarity:

We prove sharp a priori estimates for the distribution function of the dyadic maximal function ℳ ϕ, when ϕ belongs to the Lorentz space L p , q , 1 < p < ∞, 1 ≤ q < ∞. The approach rests on a precise evaluation of the Bellman function corresponding to the problem. As an application, we establish refined weak-type estimates for the dyadic maximal operator: for p,q as above and r ∈ [1,p], we determine the best constant C p , q , r such that for any ϕ L p , q , | | ϕ | | r , C p , q , r | | ϕ | | p , q .

Operators on a Hilbert space similar to a part of the backward shift of multiplicity one

Yoichi Uetake (2001)

Studia Mathematica

Similarity:

Let A: X → X be a bounded operator on a separable complex Hilbert space X with an inner product · , · X . For b, c ∈ X, a weak resolvent of A is the complex function of the form ( I - z A ) - 1 b , c X . We will discuss an equivalent condition, in terms of weak resolvents, for A to be similar to a restriction of the backward shift of multiplicity 1.