Displaying similar documents to “The punctured plane: alternating projections and L 2 -angles”

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

Strict plurisubharmonicity of Bergman kernels on generalized annuli

Yanyan Wang (2014)

Annales Polonici Mathematici

Similarity:

Let A ζ = Ω - ρ ( ζ ) · Ω ¯ be a family of generalized annuli over a domain U. We show that the logarithm of the Bergman kernel K ζ ( z ) of A ζ is plurisubharmonic provided ρ ∈ PSH(U). It is remarkable that A ζ is non-pseudoconvex when the dimension of A ζ is larger than one. For standard annuli in ℂ, we obtain an interesting formula for ² l o g K ζ / ζ ζ ̅ , as well as its boundary behavior.

Best constants for some operators associated with the Fourier and Hilbert transforms

B. Hollenbeck, N. J. Kalton, I. E. Verbitsky (2003)

Studia Mathematica

Similarity:

We determine the norm in L p ( ) , 1 < p < ∞, of the operator I - s c , where c and s are respectively the cosine and sine Fourier transforms on the positive real axis, and I is the identity operator. This solves a problem posed in 1984 by M. S. Birman [Bir] which originated in scattering theory for unbounded obstacles in the plane. We also obtain the L p -norms of the operators aI + bH, where H is the Hilbert transform (conjugate function operator) on the circle or real line, for arbitrary real...

Hardy's theorem for the helgason Fourier transform on noncompact rank one symmetric spaces

S. Thangavelu (2002)

Colloquium Mathematicae

Similarity:

Let G be a semisimple Lie group with Iwasawa decomposition G = KAN. Let X = G/K be the associated symmetric space and assume that X is of rank one. Let M be the centraliser of A in K and consider an orthonormal basis Y δ , j : δ K ̂ , 1 j d δ of L²(K/M) consisting of K-finite functions of type δ on K/M. For a function f on X let f̃(λ,b), λ ∈ ℂ, be the Helgason Fourier transform. Let h t be the heat kernel associated to the Laplace-Beltrami operator and let Q δ ( i λ + ϱ ) be the Kostant polynomials. We establish the following...

Espace de Dixmier des opérateurs de Hankel sur les espaces de Bergman à poids

Romaric Tytgat (2015)

Czechoslovak Mathematical Journal

Similarity:

Nous donnons des résultats théoriques sur l’idéal de Macaev et la trace de Dixmier. Ensuite, nous caractérisons les symboles antiholomorphes f ¯ tels que l’opérateur de Hankel H f ¯ sur l’espace de Bergman à poids soit dans l’idéal de Macaev et nous donnons la trace de Dixmier. Pour cela, nous regardons le comportement des normes de Schatten 𝒮 p quand p tend vers 1 et nous nous appuyons sur le résultat de Engliš et Rochberg sur l’espace de Bergman. Nous parlons aussi des puissances de tels opérateurs....

Bounded evaluation operators from H p into q

Martin Smith (2007)

Studia Mathematica

Similarity:

Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by T z , p ( f ) = ( 1 - | z | ² ) 1 / p f ( z ) . Necessary and sufficient conditions on zₙ are given such that T z , p maps the Hardy space H p boundedly into the sequence space q . A corresponding result for Bergman spaces is also stated.

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

Solution of a functional equation on compact groups using Fourier analysis

Abdellatif Chahbi, Brahim Fadli, Samir Kabbaj (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G be a compact group, let n N { 0 , 1 } be a fixed element and let σ be a continuous automorphism on G such that σ n = I . Using the non-abelian Fourier transform, we determine the non-zero continuous solutions f : G C of the functional equation f ( x y ) + k = 1 n - 1 f ( σ k ( y ) x ) = n f ( x ) f ( y ) , x , y G , in terms of unitary characters of G .

Polar wavelets and associated Littlewood-Paley theory

Epperson Jay, Frazier Michael

Similarity:

Abstract We develop an almost orthogonal wavelet-type expansion in ℝ² which is adapted to polar coordinates. We start by defining a product Fourier-Hankel transform f̂ and proving a sampling formula for f such that f̂ is compactly supported. For general f, the sampling formula and a partition of unity lead to an identity of the form f = μ , k , m f , φ μ k m ψ μ k m , in which each function φ μ k m and ψ μ k m is concentrated near a certain annular sector, has compactly supported product Fourier-Hankel transform, and is smooth...

Existence of solutions to the nonstationary Stokes system in H - μ 2 , 1 , μ ∈ (0,1), in a domain with a distinguished axis. Part 2. Estimate in the 3d case

W. M. Zajączkowski (2007)

Applicationes Mathematicae

Similarity:

We examine the regularity of solutions to the Stokes system in a neighbourhood of the distinguished axis under the assumptions that the initial velocity v₀ and the external force f belong to some weighted Sobolev spaces. It is assumed that the weight is the (-μ )th power of the distance to the axis. Let f L 2 , - μ , v H - μ ¹ , μ ∈ (0,1). We prove an estimate of the velocity in the H - μ 2 , 1 norm and of the gradient of the pressure in the norm of L 2 , - μ . We apply the Fourier transform with respect to the variable along...

How many clouds cover the plane?

James H. Schmerl (2003)

Fundamenta Mathematicae

Similarity:

The plane can be covered by n + 2 clouds iff 2 .

On L p integrability and convergence of trigonometric series

Dansheng Yu, Ping Zhou, Songping Zhou (2007)

Studia Mathematica

Similarity:

We first give a necessary and sufficient condition for x - γ ϕ ( x ) L p , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either k = 1 a k c o s k x or k = 1 b k s i n k x , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x)...

The harmonic Cesáro and Copson operators on the spaces L p ( ) , 1 ≤ p ≤ 2

Ferenc Móricz (2002)

Studia Mathematica

Similarity:

The harmonic Cesàro operator is defined for a function f in L p ( ) for some 1 ≤ p < ∞ by setting ( f ) ( x ) : = x ( f ( u ) / u ) d u for x > 0 and ( f ) ( x ) : = - - x ( f ( u ) / u ) d u for x < 0; the harmonic Copson operator ℂ* is defined for a function f in L ¹ l o c ( ) by setting * ( f ) ( x ) : = ( 1 / x ) x f ( u ) d u for x ≠ 0. The notation indicates that ℂ and ℂ* are adjoint operators in a certain sense. We present rigorous proofs of the following two commuting relations: (i) If f L p ( ) for some 1 ≤ p ≤ 2, then ( ( f ) ) ( t ) = * ( f ̂ ) ( t ) a.e., where f̂ denotes the Fourier transform of f. (ii) If f L p ( ) for some 1 < p ≤ 2, then...

The L p -Helmholtz projection in finite cylinders

Tobias Nau (2015)

Czechoslovak Mathematical Journal

Similarity:

In this article we prove for 1 < p < the existence of the L p -Helmholtz projection in finite cylinders Ω . More precisely, Ω is considered to be given as the Cartesian product of a cube and a bounded domain V having C 1 -boundary. Adapting an approach of Farwig (2003), operator-valued Fourier series are used to solve a related partial periodic weak Neumann problem. By reflection techniques the weak Neumann problem in Ω is solved, which implies existence and a representation of the L p -Helmholtz projection...

Pointwise Fourier inversion of distributions on spheres

Francisco Javier González Vieli (2017)

Czechoslovak Mathematical Journal

Similarity:

Given a distribution T on the sphere we define, in analogy to the work of Łojasiewicz, the value of T at a point ξ of the sphere and we show that if T has the value τ at ξ , then the Fourier-Laplace series of T at ξ is Abel-summable to τ .