Displaying similar documents to “The existence of solutions of the generalized pseudoprime congruence a f ( n ) b f ( n ) ( m o d n )

Congruence preserving operations on the ring p 3

Cyril Gavala, Miroslav Ploščica, Ivana Varga (2023)

Mathematica Bohemica

Similarity:

We investigate the interval I ( p 3 ) in the lattice of clones on the ring p 3 between the clone of polynomial operations and the clone of congruence preserving operations. All clones in this interval are known and described by means of generators. In this paper, we characterize each of these clones by the property of preserving a small set of relations. These relations turn out to be in a close connection to commutators.

On a linear homogeneous congruence

A. Schinzel, M. Zakarczemny (2006)

Colloquium Mathematicae

Similarity:

The number of solutions of the congruence a x + + a k x k 0 ( m o d n ) in the box 0 x i b i is estimated from below in the best possible way, provided for all i,j either ( a i , n ) | ( a j , n ) or ( a j , n ) | ( a i , n ) or n | [ a i , a j ] .

A note on the congruence n p k m p k n m ( mod p r )

Romeo Meštrović (2012)

Czechoslovak Mathematical Journal

Similarity:

In the paper we discuss the following type congruences: n p k m p k m n ( mod p r ) , where p is a prime, n , m , k and r are various positive integers with n m 1 , k 1 and r 1 . Given positive integers k and r , denote by W ( k , r ) the set of all primes p such that the above congruence holds for every pair of integers n m 1 . Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets W ( k , r ) and inclusion relations between them for various values k and r . In particular, we prove that W ( k + i , r ) = W ( k - 1 , r ) for all k 2 , i 0 and...

Congruences for Wolstenholme primes

Romeo Meštrović (2015)

Czechoslovak Mathematical Journal

Similarity:

A prime p is said to be a Wolstenholme prime if it satisfies the congruence 2 p - 1 p - 1 1 ( mod p 4 ) . For such a prime p , we establish an expression for 2 p - 1 p - 1 ( mod p 8 ) given in terms of the sums R i : = k = 1 p - 1 1 / k i ( i = 1 , 2 , 3 , 4 , 5 , 6 ) . Further, the expression in this congruence is reduced in terms of the sums R i ( i = 1 , 3 , 4 , 5 ). Using this congruence, we prove that for any Wolstenholme prime p we have 2 p - 1 p - 1 1 - 2 p k = 1 p - 1 1 k - 2 p 2 k = 1 p - 1 1 k 2 ( mod p 7 ) . Moreover, using a recent result of the author, we prove that a prime p satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying...

On the lattice of congruences on inverse semirings

Anwesha Bhuniya, Anjan Kumar Bhuniya (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences ρ m i n , ρ m a x , ρ m i n and ρ m a x on S and showed that ρ θ = [ ρ m i n , ρ m a x ] and ρ κ = [ ρ m i n , ρ m a x ] . Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if ρ m a x is a distributive lattice congruence and ρ m a x is a skew-ring congruence on S. If η (σ) is the...

On the quartic character of quadratic units

Zhi-Hong Sun (2013)

Acta Arithmetica

Similarity:

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, d = 2 r d and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine ( b + ( b ² + 4 α ) / 2 ) ( p - 1 ) / 4 ) ( m o d p ) for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and ( 2 a + 4 a ² + 1 ) ( p - 1 ) / 4 ( m o d p ) for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for U ( p - 1 ) / 4 ( m o d p ) and the criterion for p | U ( p - 1 ) / 8 (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and...

Linear congruences and a conjecture of Bibak

Chinnakonda Gnanamoorthy Karthick Babu, Ranjan Bera, Balasubramanian Sury (2024)

Czechoslovak Mathematical Journal

Similarity:

We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences i = 1 k a i x i b ( mod n ) . In particular, we obtain explicit expressions for the number of solutions, where x i ’s are squares modulo n . In addition, we obtain expressions for the number of solutions with order restrictions x 1 x k or with strict order restrictions x 1 > > x k in some special cases. In these results, the expressions for the number of solutions involve...

A q -congruence for a truncated 4 ϕ 3 series

Victor J. W. Guo, Chuanan Wei (2021)

Czechoslovak Mathematical Journal

Similarity:

Let Φ n ( q ) denote the n th cyclotomic polynomial in q . Recently, Guo, Schlosser and Zudilin proved that for any integer n > 1 with n 1 ( mod 4 ) , k = 0 n - 1 ( q - 1 ; q 2 ) k 2 ( q - 2 ; q 4 ) k ( q 2 ; q 2 ) k 2 ( q 4 ; q 4 ) k q 6 k 0 ( mod Φ n ( q ) 2 ) , where ( a ; q ) m = ( 1 - a ) ( 1 - a q ) ( 1 - a q m - 1 ) . In this note, we give a generalization of the above q -congruence to the modulus Φ n ( q ) 3 case. Meanwhile, we give a corresponding q -congruence modulo Φ n ( q ) 2 for n 3 ( mod 4 ) . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a 4 ϕ 3 summation formula.

Congruences for q [ p / 8 ] ( m o d p )

Zhi-Hong Sun (2013)

Acta Arithmetica

Similarity:

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine q [ p / 8 ] ( m o d p ) in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.

Principal congruence link complements

Mark D. Baker, Alan W. Reid (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

In this paper we study principal congruence link complements in S 3 . It is known that there are only finitely many such link complements, and we make a start on enumerating them using a combination of theoretical methods and computer calculations with MAGMA.