Displaying similar documents to “On highly nonintegrable functions and homogeneous polynomials”

Approximation of sets defined by polynomials with holomorphic coefficients

Marcin Bilski (2012)

Annales Polonici Mathematici

Similarity:

Let X be an analytic set defined by polynomials whose coefficients a , . . . , a s are holomorphic functions. We formulate conditions on sequences a 1 , ν , . . . , a s , ν of holomorphic functions converging locally uniformly to a , . . . , a s , respectively, such that the sequence X ν of sets obtained by replacing a j ’s by a j , ν ’s in the polynomials converges to X.

On L₁-subspaces of holomorphic functions

Anahit Harutyunyan, Wolfgang Lusky (2010)

Studia Mathematica

Similarity:

We study the spaces H μ ( Ω ) = f : Ω h o l o m o r p h i c : 0 R 0 2 π | f ( r e i φ ) | d φ d μ ( r ) < where Ω is a disc with radius R and μ is a given probability measure on [0,R[. We show that, depending on μ, H μ ( Ω ) is either isomorphic to l₁ or to ( A ) ( 1 ) . Here Aₙ is the space of all polynomials of degree ≤ n endowed with the L₁-norm on the unit sphere.

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let · be the uniform norm in the unit disk. We study the quantities M n ( α ) : = inf ( z P ( z ) + α - α ) where the infimum is taken over all polynomials P of degree n - 1 with P ( z ) = 1 and α > 0 . In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that inf α > 0 M n ( α ) = 1 / n . We find the exact values of M n ( α ) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Similarity:

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact...

The norm of the polynomial truncation operator on the unit disk and on [-1,1]

Tamás Erdélyi (2001)

Colloquium Mathematicae

Similarity:

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. c ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials P c of the form P ( z ) : = j = 0 n a j z j , a j C , by S ( P ) ( z ) : = j = 0 n a ̃ j z j , a ̃ j : = a j | a j | m i n | a j | , 1 (here 0/0 is interpreted as 1). We define the norms of the truncation operators by S , D r e a l : = s u p P ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | ) , S , D c o m p : = s u p P c ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁...

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

Representations of the general linear group over symmetry classes of polynomials

Yousef Zamani, Mahin Ranjbari (2018)

Czechoslovak Mathematical Journal

Similarity:

Let V be the complex vector space of homogeneous linear polynomials in the variables x 1 , ... , x m . Suppose G is a subgroup of S m , and χ is an irreducible character of G . Let H d ( G , χ ) be the symmetry class of polynomials of degree d with respect to G and χ . For any linear operator T acting on V , there is a (unique) induced operator K χ ( T ) End ( H d ( G , χ ) ) acting on symmetrized decomposable polynomials by K χ ( T ) ( f 1 * f 2 * ... * f d ) = T f 1 * T f 2 * ... * T f d . In this paper, we show that the representation T K χ ( T ) of the general linear group G L ( V ) is equivalent to the direct sum of χ ( 1 ) copies...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...

Spaces of geometrically generic configurations

Yoel Feler (2008)

Journal of the European Mathematical Society

Similarity:

Let X denote either ℂℙ m or m . We study certain analytic properties of the space n ( X , g p ) of ordered geometrically generic n -point configurations in X . This space consists of all q = ( q 1 , , q n ) X n such that no m + 1 of the points q 1 , , q n belong to a hyperplane in X . In particular, we show that for a big enough n any holomorphic map f : n ( ℂℙ m , g p ) n ( ℂℙ m , g p ) commuting with the natural action of the symmetric group 𝐒 ( n ) in n ( ℂℙ m , g p ) is of the form f ( q ) = τ ( q ) q = ( τ ( q ) q 1 , , τ ( q ) q n ) , q n ( ℂℙ m , g p ) , where τ : n ( ℂℙ m , g p ) 𝐏𝐒𝐋 ( m + 1 , ) is an 𝐒 ( n ) -invariant holomorphic map. A similar result holds true for mappings of the configuration...

J -holomorphic discs and real analytic hypersurfaces

William Alexandre, Emmanuel Mazzilli (2014)

Annales de l’institut Fourier

Similarity:

We give in 6 a real analytic almost complex structure J , a real analytic hypersurface M and a vector v in the Levi null set at 0 of M , such that there is no germ of J -holomorphic disc γ included in M with γ ( 0 ) = 0 and γ x ( 0 ) = v , although the Levi form of M has constant rank. Then for any hypersurface M and any complex structure J , we give sufficient conditions under which there exists such a germ of disc.

On spaces of holomorphic functions in ℂⁿ

Diana D. Jiménez S., Lino F. Reséndis O., Luis M. Tovar S. (2014)

Banach Center Publications

Similarity:

Following the line of Ouyang et al. (1998) to study the p spaces of holomorphic functions in the unit ball of ℂⁿ, we present in this paper several results and relations among p ( ) , the α-Bloch, the Dirichlet p and the little p , 0 spaces.

Equidistribution towards the Green current for holomorphic maps

Tien-Cuong Dinh, Nessim Sibony (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let f be a non-invertible holomorphic endomorphism of a projective space and f n its iterate of order n . We prove that the pull-back by f n of a generic (in the Zariski sense) hypersurface, properly normalized, converges to the Green current associated to f when n tends to infinity. We also give an analogous result for the pull-back of positive closed ( 1 , 1 ) -currents and a similar result for regular polynomial automorphisms of  k .

Linearly-invariant families and generalized Meixner–Pollaczek polynomials

Iwona Naraniecka, Jan Szynal, Anna Tatarczak (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The extremal functions  f 0 ( z )   realizing the maxima of some functionals (e.g. max | a 3 | , and  max a r g f ' ( z ) ) within the so-called universal linearly invariant family U α (in the sense of Pommerenke [10]) have such a form that f 0 ' ( z )   looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials P n λ ( x ; θ , ψ ) of a real variable x as coefficients of G λ ( x ; θ , ψ ; z ) = 1 ( 1 - z e i θ ) λ - i x ( 1 - z e i ψ ) λ + i x = n = 0 P n λ ( x ; θ , ψ ) z n , | z | < 1 , where the parameters λ , θ , ψ satisfy the conditions:...

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Non-homogeneous directional equations: Slice solutions belonging to functions of bounded L -index in the unit ball

Andriy Bandura, Tetyana Salo, Oleh Skaskiv (2024)

Mathematica Bohemica

Similarity:

For a given direction 𝐛 n { 0 } we study non-homogeneous directional linear higher-order equations whose all coefficients belong to a class of joint continuous functions which are holomorphic on intersection of all directional slices with a unit ball. Conditions are established providing boundedness of L -index in the direction with a positive continuous function L satisfying some behavior conditions in the unit ball. The provided conditions concern every solution belonging to the same class...

Holomorphic line bundles and divisors on a domain of a Stein manifold

Makoto Abe (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let D be an open set of a Stein manifold X of dimension n such that H k ( D , 𝒪 ) = 0 for 2 k n - 1 . We prove that D is Stein if and only if every topologically trivial holomorphic line bundle L on D is associated to some Cartier divisor 𝔡 on D .

Pluriharmonic extension in proper image domains

Rafał Czyż (2009)

Annales Polonici Mathematici

Similarity:

Let D j be a bounded hyperconvex domain in n j and set D = D × × D s , j=1,...,s, s ≥ 3. Also let Ω π be the image of D under the proper holomorphic map π. We characterize those continuous functions f : Ω π that can be extended to a real-valued pluriharmonic function in Ω π .

On the value set of small families of polynomials over a finite field, II

Guillermo Matera, Mariana Pérez, Melina Privitelli (2014)

Acta Arithmetica

Similarity:

We obtain an estimate on the average cardinality (d,s,a) of the value set of any family of monic polynomials in q [ T ] of degree d for which s consecutive coefficients a = ( a d - 1 , . . . , a d - s ) are fixed. Our estimate asserts that ( d , s , a ) = μ d q + ( q 1 / 2 ) , where μ d : = r = 1 d ( ( - 1 ) r - 1 ) / ( r ! ) . We also prove that ( d , s , a ) = μ ² d q ² + ( q 3 / 2 ) , where ₂(d,s,a) is the average second moment of the value set cardinalities for any family of monic polynomials of q [ T ] of degree d with s consecutive coefficients fixed as above. Finally, we show that ( d , 0 ) = μ ² d q ² + ( q ) , where ₂(d,0) denotes the average second moment for...

Area differences under analytic maps and operators

Mehmet Çelik, Luke Duane-Tessier, Ashley Marcial Rodriguez, Daniel Rodriguez, Aden Shaw (2024)

Czechoslovak Mathematical Journal

Similarity:

Motivated by the relationship between the area of the image of the unit disk under a holomorphic mapping h and that of z h , we study various L 2 norms for T ϕ ( h ) , where T ϕ is the Toeplitz operator with symbol ϕ . In Theorem , given polynomials p and q we find a symbol ϕ such that T ϕ ( p ) = q . We extend some of our results to the polydisc.

Characterization of functions whose forward differences are exponential polynomials

J. M. Almira (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given { h 1 , , h t } a finite subset of d , we study the continuous complex valued functions and the Schwartz complex valued distributions f defined on d with the property that the forward differences Δ h k m k f are (in distributional sense) continuous exponential polynomials for some natural numbers m 1 , , m t .

On the nontrivial solvability of systems of homogeneous linear equations over in ZFC

Jan Šaroch (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Motivated by the paper by H. Herrlich, E. Tachtsis (2017) we investigate in ZFC the following compactness question: for which uncountable cardinals κ , an arbitrary nonempty system S of homogeneous -linear equations is nontrivially solvable in provided that each of its subsystems of cardinality less than κ is nontrivially solvable in ?