Displaying similar documents to “On the norm-closure of the class of hypercyclic operators”

On generalized property (v) for bounded linear operators

J. Sanabria, C. Carpintero, E. Rosas, O. García (2012)

Studia Mathematica

Similarity:

An operator T acting on a Banach space X has property (gw) if σ a ( T ) σ S B F ¯ ( T ) = E ( T ) , where σ a ( T ) is the approximate point spectrum of T, σ S B F ¯ ( T ) is the upper semi-B-Weyl spectrum of T and E(T) is the set of all isolated eigenvalues of T. We introduce and study two new spectral properties (v) and (gv) in connection with Weyl type theorems. Among other results, we show that T satisfies (gv) if and only if T satisfies (gw) and σ ( T ) = σ a ( T ) .

The essential spectrum of holomorphic Toeplitz operators on H p spaces

Mats Andersson, Sebastian Sandberg (2003)

Studia Mathematica

Similarity:

We compute the essential Taylor spectrum of a tuple of analytic Toeplitz operators T g on H p ( D ) , where D is a strictly pseudoconvex domain. We also provide specific formulas for the index of T g provided that g - 1 ( 0 ) is a compact subset of D.

Subsets of nonempty joint spectrum in topological algebras

Antoni Wawrzyńczyk (2018)

Mathematica Bohemica

Similarity:

We give a necessary and a sufficient condition for a subset S of a locally convex Waelbroeck algebra 𝒜 to have a non-void left joint spectrum σ l ( S ) . In particular, for a Lie subalgebra L 𝒜 we have σ l ( L ) if and only if [ L , L ] generates in 𝒜 a proper left ideal. We also obtain a version of the spectral mapping formula for a modified left joint spectrum. Analogous theorems for the right joint spectrum and the Harte spectrum are also valid.

On operators with the same local spectra

Aleksandar Torgašev (1998)

Czechoslovak Mathematical Journal

Similarity:

Let B ( X ) be the algebra of all bounded linear operators in a complex Banach space X . We consider operators T 1 , T 2 B ( X ) satisfying the relation σ T 1 ( x ) = σ T 2 ( x ) for any vector x X , where σ T ( x ) denotes the local spectrum of T B ( X ) at the point x X . We say then that T 1 and T 2 have the same local spectra. We prove that then, under some conditions, T 1 - T 2 is a quasinilpotent operator, that is ( T 1 - T 2 ) n 1 / n 0 as n . Without these conditions, we describe the operators with the same local spectra only in some particular cases.

Weighted norm estimates and L p -spectral independence of linear operators

Peer C. Kunstmann, Hendrik Vogt (2007)

Colloquium Mathematicae

Similarity:

We investigate the L p -spectrum of linear operators defined consistently on L p ( Ω ) for p₀ ≤ p ≤ p₁, where (Ω,μ) is an arbitrary σ-finite measure space and 1 ≤ p₀ < p₁ ≤ ∞. We prove p-independence of the L p -spectrum assuming weighted norm estimates. The assumptions are formulated in terms of a measurable semi-metric d on (Ω,μ); the balls with respect to this semi-metric are required to satisfy a subexponential volume growth condition. We show how previous results on L p -spectral independence...

Generalized spectral perturbation and the boundary spectrum

Sonja Mouton (2021)

Czechoslovak Mathematical Journal

Similarity:

By considering arbitrary mappings ω from a Banach algebra A into the set of all nonempty, compact subsets of the complex plane such that for all a A , the set ω ( a ) lies between the boundary and connected hull of the exponential spectrum of a , we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.

Borel parts of the spectrum of an operator and of the operator algebra of a separable Hilbert space

Piotr Niemiec (2012)

Studia Mathematica

Similarity:

For a linear operator T in a Banach space let σ p ( T ) denote the point spectrum of T, let σ p , n ( T ) for finite n > 0 be the set of all λ σ p ( T ) such that dim ker(T - λ) = n and let σ p , ( T ) be the set of all λ σ p ( T ) for which ker(T - λ) is infinite-dimensional. It is shown that σ p ( T ) is σ , σ p , ( T ) is σ δ and for each finite n the set σ p , n ( T ) is the intersection of an σ set and a δ set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more...

On hyponormal operators in Krein spaces

Kevin Esmeral, Osmin Ferrer, Jorge Jalk, Boris Lora Castro (2019)

Archivum Mathematicum

Similarity:

In this paper the hyponormal operators on Krein spaces are introduced. We state conditions for the hyponormality of bounded operators focusing, in particular, on those operators T for which there exists a fundamental decomposition 𝕂 = 𝕂 + 𝕂 - of the Krein space 𝕂 with 𝕂 + and 𝕂 - invariant under T .

Note on the isomorphism problem for weighted unitary operators associated with a nonsingular automorphism

K. Frączek, M. Wysokińska (2008)

Colloquium Mathematicae

Similarity:

We give a negative answer to a question put by Nadkarni: Let S be an ergodic, conservative and nonsingular automorphism on ( X ̃ , X ̃ , m ) . Consider the associated unitary operators on L ² ( X ̃ , X ̃ , m ) given by U ̃ S f = ( d ( m S ) / d m ) · ( f S ) and φ · U ̃ S , where φ is a cocycle of modulus one. Does spectral isomorphism of these two operators imply that φ is a coboundary? To answer it negatively, we give an example which arises from an infinite measure-preserving transformation with countable Lebesgue spectrum.

Fredholm spectrum and growth of cohomology groups

Jörg Eschmeier (2008)

Studia Mathematica

Similarity:

Let T ∈ L(E)ⁿ be a commuting tuple of bounded linear operators on a complex Banach space E and let σ F ( T ) = σ ( T ) σ e ( T ) be the non-essential spectrum of T. We show that, for each connected component M of the manifold R e g ( σ F ( T ) ) of all smooth points of σ F ( T ) , there is a number p ∈ 0, ..., n such that, for each point z ∈ M, the dimensions of the cohomology groups H p ( ( z - T ) k , E ) grow at least like the sequence ( k d ) k 1 with d = dim M.

Resonant delocalization for random Schrödinger operators on tree graphs

Michael Aizenman, Simone Warzel (2013)

Journal of the European Mathematical Society

Similarity:

We analyse the spectral phase diagram of Schrödinger operators T + λ V on regular tree graphs, with T the graph adjacency operator and V a random potential given by i i d random variables. The main result is a criterion for the emergence of absolutely continuous ( a c ) spectrum due to fluctuation-enabled resonances between distant sites. Using it we prove that for unbounded random potentials a c spectrum appears at arbitrarily weak disorder ( λ 1 ) in an energy regime which extends beyond the spectrum of T ....

Fermi Golden Rule, Feshbach Method and embedded point spectrum

Jan Dereziński (1998-1999)

Séminaire Équations aux dérivées partielles

Similarity:

A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak s ˇ ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

Isomorphic properties in spaces of compact operators

Ioana Ghenciu (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the definition of p -limited completely continuous operators, 1 p < . The question of whether a space of operators has the property that every p -limited subset is relative compact when the dual of the domain and the codomain have this property is studied using p -limited completely continuous evaluation operators.

The Embeddability of c₀ in Spaces of Operators

Ioana Ghenciu, Paul Lewis (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Results of Emmanuele and Drewnowski are used to study the containment of c₀ in the space K w * ( X * , Y ) , as well as the complementation of the space K w * ( X * , Y ) of w*-w compact operators in the space L w * ( X * , Y ) of w*-w operators from X* to Y.

Conditions equivalent to C* independence

Shuilin Jin, Li Xu, Qinghua Jiang, Li Li (2012)

Studia Mathematica

Similarity:

Let and be mutually commuting unital C* subalgebras of (). It is shown that and are C* independent if and only if for all natural numbers n, m, for all n-tuples A = (A₁, ..., Aₙ) of doubly commuting nonzero operators of and m-tuples B = (B₁, ..., Bₘ) of doubly commuting nonzero operators of , S p ( A , B ) = S p ( A ) × S p ( B ) , where Sp denotes the joint Taylor spectrum.

Regularity of domains of parameterized families of closed linear operators

Teresa Winiarska, Tadeusz Winiarski (2003)

Annales Polonici Mathematici

Similarity:

The purpose of this paper is to provide a method of reduction of some problems concerning families A t = ( A ( t ) ) t of linear operators with domains ( t ) t to a problem in which all the operators have the same domain . To do it we propose to construct a family ( Ψ t ) t of automorphisms of a given Banach space X having two properties: (i) the mapping t Ψ t is sufficiently regular and (ii) Ψ t ( ) = t for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition...

Multiple summing operators on l p spaces

Dumitru Popa (2014)

Studia Mathematica

Similarity:

We use the Maurey-Rosenthal factorization theorem to obtain a new characterization of multiple 2-summing operators on a product of l p spaces. This characterization is used to show that multiple s-summing operators on a product of l p spaces with values in a Hilbert space are characterized by the boundedness of a natural multilinear functional (1 ≤ s ≤ 2). We use these results to show that there exist many natural multiple s-summing operators T : l 4 / 3 × l 4 / 3 l such that none of the associated linear operators...

Weighted Frobenius-Perron operators and their spectra

Mohammad Reza Jabbarzadeh, Rana Hajipouri (2017)

Mathematica Bohemica

Similarity:

First, some classic properties of a weighted Frobenius-Perron operator 𝒫 ϕ u on L 1 ( Σ ) as a predual of weighted Koopman operator W = u U ϕ on L ( Σ ) will be investigated using the language of the conditional expectation operator. Also, we determine the spectrum of 𝒫 ϕ u under certain conditions.

Simultaneous solutions of operator Sylvester equations

Sang-Gu Lee, Quoc-Phong Vu (2014)

Studia Mathematica

Similarity:

We consider simultaneous solutions of operator Sylvester equations A i X - X B i = C i (1 ≤ i ≤ k), where ( A , . . . , A k ) and ( B , . . . , B k ) are commuting k-tuples of bounded linear operators on Banach spaces and ℱ, respectively, and ( C , . . . , C k ) is a (compatible) k-tuple of bounded linear operators from ℱ to , and prove that if the joint Taylor spectra of ( A , . . . , A k ) and ( B , . . . , B k ) do not intersect, then this system of Sylvester equations has a unique simultaneous solution.

The group of L²-isometries on H¹₀

Esteban Andruchow, Eduardo Chiumiento, Gabriel Larotonda (2013)

Studia Mathematica

Similarity:

Let Ω be an open subset of ℝⁿ. Let L² = L²(Ω,dx) and H¹₀ = H¹₀(Ω) be the standard Lebesgue and Sobolev spaces of complex-valued functions. The aim of this paper is to study the group of invertible operators on H¹₀ which preserve the L²-inner product. When Ω is bounded and ∂Ω is smooth, this group acts as the intertwiner of the H¹₀ solutions of the non-homogeneous Helmholtz equation u - Δu = f, u | Ω = 0 . We show that is a real Banach-Lie group, whose Lie algebra is (i times) the space of symmetrizable...

Stability of infinite ranges and kernels

K.-H. Förster, V. Müller (2006)

Studia Mathematica

Similarity:

Let A(·) be a regular function defined on a connected metric space G whose values are mutually commuting essentially Kato operators in a Banach space. Then the spaces R ( A ( z ) ) and N ( A ( z ) ) ¯ do not depend on z ∈ G. This generalizes results of B. Aupetit and J. Zemánek.