Displaying similar documents to “The s-packing chromatic number of a graph”

A note on the open packing number in graphs

Mehdi Mohammadi, Mohammad Maghasedi (2019)

Mathematica Bohemica

Similarity:

A subset S of vertices in a graph G is an open packing set if no pair of vertices of S has a common neighbor in G . An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The maximum cardinality of an open packing set is called the open packing number and is denoted by ρ o ( G ) . A subset S in a graph G with no isolated vertex is called a total dominating set if any vertex of G is adjacent to some vertex of S . The total domination number...

Packing four copies of a tree into a complete bipartite graph

Liqun Pu, Yuan Tang, Xiaoli Gao (2022)

Czechoslovak Mathematical Journal

Similarity:

In considering packing three copies of a tree into a complete bipartite graph, H. Wang (2009) gives a conjecture: For each tree T of order n and each integer k 2 , there is a k -packing of T in a complete bipartite graph B n + k - 1 whose order is n + k - 1 . We prove the conjecture is true for k = 4 .

On subgraphs without large components

Glenn G. Chappell, John Gimbel (2017)

Mathematica Bohemica

Similarity:

We consider, for a positive integer k , induced subgraphs in which each component has order at most k . Such a subgraph is said to be k -divided. We show that finding large induced subgraphs with this property is NP-complete. We also consider a related graph-coloring problem: how many colors are required in a vertex coloring in which each color class induces a k -divided subgraph. We show that the problem of determining whether some given number of colors suffice is NP-complete, even for...

On distinguishing and distinguishing chromatic numbers of hypercubes

Werner Klöckl (2008)

Discussiones Mathematicae Graph Theory

Similarity:

The distinguishing number D(G) of a graph G is the least integer d such that G has a labeling with d colors that is not preserved by any nontrivial automorphism. The restriction to proper labelings leads to the definition of the distinguishing chromatic number χ D ( G ) of G. Extending these concepts to infinite graphs we prove that D ( Q ) = 2 and χ D ( Q ) = 3 , where Q denotes the hypercube of countable dimension. We also show that χ D ( Q ) = 4 , thereby completing the investigation of finite hypercubes with respect to χ D . Our...

Upper oriented chromatic number of undirected graphs and oriented colorings of product graphs

Éric Sopena (2012)

Discussiones Mathematicae Graph Theory

Similarity:

The oriented chromatic number of an oriented graph G is the minimum order of an oriented graph H such that G admits a homomorphism to H . The oriented chromatic number of an undirected graph G is then the greatest oriented chromatic number of its orientations. In this paper, we introduce the new notion of the upper oriented chromatic number of an undirected graph G, defined as the minimum order of an oriented graph U such that every orientation G of G admits a homomorphism to U . We give...

Proper connection number of bipartite graphs

Jun Yue, Meiqin Wei, Yan Zhao (2018)

Czechoslovak Mathematical Journal

Similarity:

An edge-colored graph G is proper connected if every pair of vertices is connected by a proper path. The proper connection number of a connected graph G , denoted by pc ( G ) , is the smallest number of colors that are needed to color the edges of G in order to make it proper connected. In this paper, we obtain the sharp upper bound for pc ( G ) of a general bipartite graph G and a series of extremal graphs. Additionally, we give a proper 2 -coloring for a connected bipartite graph G having δ ( G ) 2 and a dominating...

Classes of hypergraphs with sum number one

Hanns-Martin Teichert (2000)

Discussiones Mathematicae Graph Theory

Similarity:

A hypergraph ℋ is a sum hypergraph iff there are a finite S ⊆ ℕ⁺ and d̲,d̅ ∈ ℕ⁺ with 1 < d̲ < d̅ such that ℋ is isomorphic to the hypergraph d ̲ , d ̅ ( S ) = ( V , ) where V = S and = e S : d ̲ < | e | < d ̅ v e v S . For an arbitrary hypergraph ℋ the sum number(ℋ ) is defined to be the minimum number of isolatedvertices w , . . . , w σ V such that w , . . . , w σ is a sum hypergraph. For graphs it is known that cycles Cₙ and wheels Wₙ have sum numbersgreater than one. Generalizing these graphs we prove for the hypergraphs ₙ and ₙ that under a certain condition...

Generalized list colourings of graphs

Mieczysław Borowiecki, Ewa Drgas-Burchardt, Peter Mihók (1995)

Discussiones Mathematicae Graph Theory

Similarity:

We prove: (1) that c h P ( G ) - χ P ( G ) can be arbitrarily large, where c h P ( G ) and χ P ( G ) are P-choice and P-chromatic numbers, respectively, (2) the (P,L)-colouring version of Brooks’ and Gallai’s theorems.

On 𝓕-independence in graphs

Frank Göring, Jochen Harant, Dieter Rautenbach, Ingo Schiermeyer (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let be a set of graphs and for a graph G let α ( G ) and α * ( G ) denote the maximum order of an induced subgraph of G which does not contain a graph in as a subgraph and which does not contain a graph in as an induced subgraph, respectively. Lower bounds on α ( G ) and α * ( G ) are presented.

Neighbor sum distinguishing list total coloring of IC-planar graphs without 5-cycles

Donghan Zhang (2022)

Czechoslovak Mathematical Journal

Similarity:

Let G = ( V ( G ) , E ( G ) ) be a simple graph and E G ( v ) denote the set of edges incident with a vertex v . A neighbor sum distinguishing (NSD) total coloring φ of G is a proper total coloring of G such that z E G ( u ) { u } φ ( z ) z E G ( v ) { v } φ ( z ) for each edge u v E ( G ) . Pilśniak and Woźniak asserted in 2015 that each graph with maximum degree Δ admits an NSD total ( Δ + 3 ) -coloring. We prove that the list version of this conjecture holds for any IC-planar graph with Δ 11 but without 5 -cycles by applying the Combinatorial Nullstellensatz.

On characterization of uniquely 3-list colorable complete multipartite graphs

Yancai Zhao, Erfang Shan (2010)

Discussiones Mathematicae Graph Theory

Similarity:

For each vertex v of a graph G, if there exists a list of k colors, L(v), such that there is a unique proper coloring for G from this collection of lists, then G is called a uniquely k-list colorable graph. Ghebleh and Mahmoodian characterized uniquely 3-list colorable complete multipartite graphs except for nine graphs: K 2 , 2 , r r ∈ 4,5,6,7,8, K 2 , 3 , 4 , K 1 * 4 , 4 , K 1 * 4 , 5 , K 1 * 5 , 4 . Also, they conjectured that the nine graphs are not U3LC graphs. After that, except for K 2 , 2 , r r ∈ 4,5,6,7,8, the others have been proved not...

Some properties of packing measure with doubling gauge

Sheng-You Wen, Zhi-Ying Wen (2004)

Studia Mathematica

Similarity:

Let g be a doubling gauge. We consider the packing measure g and the packing premeasure g in a metric space X. We first show that if g ( X ) is finite, then as a function of X, g has a kind of “outer regularity”. Then we prove that if X is complete separable, then λ s u p g ( F ) g ( B ) s u p g ( F ) for every Borel subset B of X, where the supremum is taken over all compact subsets of B having finite g -premeasure, and λ is a positive number depending only on the doubling gauge g. As an application, we show that for every doubling...

Note on improper coloring of 1 -planar graphs

Yanan Chu, Lei Sun, Jun Yue (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G = ( V , E ) is called improperly ( d 1 , , d k ) -colorable if the vertex set V can be partitioned into subsets V 1 , , V k such that the graph G [ V i ] induced by the vertices of V i has maximum degree at most d i for all 1 i k . In this paper, we mainly study the improper coloring of 1 -planar graphs and show that 1 -planar graphs with girth at least 7 are ( 2 , 0 , 0 , 0 ) -colorable.

Two variants of the size Ramsey number

Andrzej Kurek, Andrzej Ruciński (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Given a graph H and an integer r ≥ 2, let G → (H,r) denote the Ramsey property of a graph G, that is, every r-coloring of the edges of G results in a monochromatic copy of H. Further, let m ( G ) = m a x F G | E ( F ) | / | V ( F ) | and define the Ramsey density m i n f ( H , r ) as the infimum of m(G) over all graphs G such that G → (H,r). In the first part of this paper we show that when H is a complete graph Kₖ on k vertices, then m i n f ( H , r ) = ( R - 1 ) / 2 , where R = R(k;r) is the classical Ramsey number. As a corollary we derive a new proof of the result credited...

Perturbing the hexagonal circle packing: a percolation perspective

Itai Benjamini, Alexandre Stauffer (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider the hexagonal circle packing with radius 1 / 2 and perturb it by letting the circles move as independent Brownian motions for time t . It is shown that, for large enough t , if 𝛱 t is the point process given by the center of the circles at time t , then, as t , the critical radius for circles centered at 𝛱 t to contain an infinite component converges to that of continuum percolation (which was shown – based on a Monte Carlo estimate – by Balister, Bollobás and Walters to be strictly...