The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Spirallike mappings and univalent subordination chains in n

Coefficient inequalities for concave and meromorphically starlike univalent functions

B. Bhowmik, S. Ponnusamy (2008)

Annales Polonici Mathematici

Similarity:

Let denote the open unit disk and f: → ℂ̅ be meromorphic and univalent in with a simple pole at p ∈ (0,1) and satisfying the standard normalization f(0) = f’(0)-1 = 0. Also, assume that f has the expansion f ( z ) = n = - 1 a ( z - p ) , |z-p| < 1-p, and maps onto a domain whose complement with respect to ℂ̅ is a convex set (starlike set with respect to a point w₀ ∈ ℂ, w₀ ≠ 0 resp.). We call such functions concave (meromorphically starlike resp.) univalent functions and denote this class by C o ( p ) ( Σ s ( p , w ) resp.). We prove...

Initial Maclaurin coefficient estimates for λ -pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions

Abbas Kareem Wanas, Basem Aref Frasin (2022)

Mathematica Bohemica

Similarity:

We introduce and study two certain classes of holomorphic and bi-univalent functions associating λ -pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor–Maclaurin coefficients | a 2 | and | a 3 | for functions belonging to these classes. Further we point out certain special cases for our results.

Univalent harmonic mappings II

Albert E. Livingston (1997)

Annales Polonici Mathematici

Similarity:

Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class S H ( U , Ω ( a , b ) ) of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, f z ( 0 ) > 0 and f z ̅ ( 0 ) = 0 .

Sakaguchi type functions defined by balancing polynomials

Gunasekar Saravanan, Sudharsanan Baskaran, Balasubramaniam Vanithakumari, Serap Bulut (2025)

Mathematica Bohemica

Similarity:

The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients | a 2 | and | a 3 | have also been estimated.

Sufficient conditions for starlike and convex functions

S. Ponnusamy, P. Vasundhra (2007)

Annales Polonici Mathematici

Similarity:

For n ≥ 1, let denote the class of all analytic functions f in the unit disk Δ of the form f ( z ) = z + k = 2 a k z k . For Re α < 2 and γ > 0 given, let (γ,α) denote the class of all functions f ∈ satisfying the condition |f’(z) - α f(z)/z + α - 1| ≤ γ, z ∈ Δ. We find sufficient conditions for functions in (γ,α) to be starlike of order β. A generalization of this result along with some convolution results is also obtained.

A proof of the Livingston conjecture for the fourth and the fifth coefficient of concave univalent functions

Karl-Joachim Wirths (2004)

Annales Polonici Mathematici

Similarity:

Let D denote the open unit disc and f:D → ℂ̅ be meromorphic and injective in D. We further assume that f has a simple pole at the point p ∈ (0,1) and an expansion f ( z ) = z + n = 2 a ( f ) z , |z| < p. In particular, we consider f that map D onto a domain whose complement with respect to ℂ̅ is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted by Co(p). It is proved that for p ∈ (0,1) the domain of variability...

Faber polynomial coefficient estimates of bi-univalent functions connected with the q -convolution

Sheza M. El-Deeb, Serap Bulut (2023)

Mathematica Bohemica

Similarity:

We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q -convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.

Univalence, strong starlikeness and integral transforms

M. Obradović, S. Ponnusamy, P. Vasundhra (2005)

Annales Polonici Mathematici

Similarity:

Let represent the class of all normalized analytic functions f in the unit disc Δ. In the present work, we first obtain a necessary condition for convex functions in Δ. Conditions are established for a certain combination of functions to be starlike or convex in Δ. Also, using the Hadamard product as a tool, we obtain sufficient conditions for functions to be in the class of functions whose real part is positive. Moreover, we derive conditions on f and μ so that the non-linear integral...

Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function

G. Murugusundaramoorthy, K. Uma (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by T S b μ ( α , β , γ ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class T S b μ ( α , β , γ ) . In particular, we obtain integral means inequalities for the function f ( z ) belongs to the class  T S b μ ( α , β , γ ) in the unit disc.

Region of variability for functions with positive real part

Saminathan Ponnusamy, Allu Vasudevarao (2010)

Annales Polonici Mathematici

Similarity:

For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let γ , β denote the class of all analytic functions P in the unit disk with P(0) = 1 and R e ( e i γ P ( z ) ) > β c o s γ in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability V ( z , λ ) for 0 z P ( ζ ) d ζ when P ranges over the class ( λ ) = P γ , β : P ' ( 0 ) = 2 ( 1 - β ) λ e - i γ c o s γ . As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.

Some properties for α -starlike functions with respect to k -symmetric points of complex order

H. E. Darwish, A. Y. Lashin, S. M. Sowileh (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In the present work, we introduce the subclass 𝒯 γ , α k ( ϕ ) , of starlike functions with respect to k -symmetric points of complex order γ ( γ 0 ) in the open unit disc . Some interesting subordination criteria, inclusion relations and the integral representation for functions belonging to this class are provided. The results obtained generalize some known results, and some other new results are obtained.

On typically real functions which are generated by a fixed typically real function

Magdalena Sobczak-Kneć, Katarzyna Trąbka-Więcław (2011)

Czechoslovak Mathematical Journal

Similarity:

Let T be the family of all typically real functions, i.e. functions that are analytic in the unit disk Δ : = { z : | z | < 1 } , normalized by f ( 0 ) = f ' ( 0 ) - 1 = 0 and such that Im z Im f ( z ) 0 for z Δ . In this paper we discuss the class T g defined as T g : = { f ( z ) g ( z ) : f T } , g T . We determine the sets g T T g and g T T g . Moreover, for a fixed g , we determine the superdomain of local univalence of T g , the radii of local univalence, of starlikeness and of univalence of T g .

Generalized problem of starlikeness for products of close-to-star functions

Jacek Dziok (2013)

Annales Polonici Mathematici

Similarity:

We consider functions of the type F ( z ) = z j = 1 n [ f j ( z ) / z ] a j , where a j are real numbers and f j are β j -strongly close-to-starlike functions of order α j . We look for conditions on the center and radius of the disk (a,r) = z:|z-a| < r, |a| < r ≤ 1 - |a|, ensuring that F((a,r)) is a domain starlike with respect to the origin.

Sharp estimation of the coefficients of bounded univalent functions close to identity

Lucjan Siewierski

Similarity:

CONTENTSIntroduction...............................................................................................................................................................................5Definitions and notation.........................................................................................................................................................7The main result........................................................................................................................................................................91....