Displaying similar documents to “The Fibonacci automorphism of free Burnside groups”

Large free subgroups of automorphism groups of ultrahomogeneous spaces

Szymon Głąb, Filip Strobin (2015)

Colloquium Mathematicae

Similarity:

We consider the following notion of largeness for subgroups of S . A group G is large if it contains a free subgroup on generators. We give a necessary condition for a countable structure A to have a large group Aut(A) of automorphisms. It turns out that any countable free subgroup of S can be extended to a large free subgroup of S , and, under Martin’s Axiom, any free subgroup of S of cardinality less than can also be extended to a large free subgroup of S . Finally, if Gₙ are countable...

Regularity of sets with constant intrinsic normal in a class of Carnot groups

Marco Marchi (2014)

Annales de l’institut Fourier

Similarity:

In this Note, we define a class of stratified Lie groups of arbitrary step (that are called “groups of type ” throughout the paper), and we prove that, in these groups, sets with constant intrinsic normal are vertical halfspaces. As a consequence, the reduced boundary of a set of finite intrinsic perimeter in a group of type is rectifiable in the intrinsic sense (De Giorgi’s rectifiability theorem). This result extends the previous one proved by Franchi, Serapioni & Serra Cassano...

A problem of Kollár and Larsen on finite linear groups and crepant resolutions

Robert Guralnick, Pham Tiep (2012)

Journal of the European Mathematical Society

Similarity:

The notion of age of elements of complex linear groups was introduced by M. Reid and is of importance in algebraic geometry, in particular in the study of crepant resolutions and of quotients of Calabi–Yau varieties. In this paper, we solve a problem raised by J. Kollár and M. Larsen on the structure of finite irreducible linear groups generated by elements of age 1 . More generally, we bound the dimension of finite irreducible linear groups generated by elements of bounded deviation....

Deformation theory and finite simple quotients of triangle groups I

Michael Larsen, Alexander Lubotzky, Claude Marion (2014)

Journal of the European Mathematical Society

Similarity:

Let 2 a b c with μ = 1 / a + 1 / b + 1 / c < 1 and let T = T a , b , c = x , y , z : x a = y b = z c = x y z = 1 be the corresponding hyperbolic triangle group. Many papers have been dedicated to the following question: what are the finite (simple) groups which appear as quotients of T ? (Classically, for ( a , b , c ) = ( 2 , 3 , 7 ) and more recently also for general ( a , b , c ) .) These papers have used either explicit constructive methods or probabilistic ones. The goal of this paper is to present a new approach based on the theory of representation varieties (via deformation theory). As a corollary we essentially...

Coleman automorphisms of finite groups with a self-centralizing normal subgroup

Jinke Hai (2020)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group with a normal subgroup N such that C G ( N ) N . It is shown that under some conditions, Coleman automorphisms of G are inner. Interest in such automorphisms arose from the study of the normalizer problem for integral group rings.

Automorphisms of ( λ ) / κ

Paul Larson, Paul McKenney (2016)

Fundamenta Mathematicae

Similarity:

We study conditions on automorphisms of Boolean algebras of the form ( λ ) / κ (where λ is an uncountable cardinal and κ is the ideal of sets of cardinality less than κ ) which allow one to conclude that a given automorphism is trivial. We show (among other things) that every automorphism of ( 2 κ ) / κ which is trivial on all sets of cardinality κ⁺ is trivial, and that M A implies both that every automorphism of (ℝ)/Fin is trivial on a cocountable set and that every automorphism of (ℝ)/Ctble is trivial. ...

Limits of relatively hyperbolic groups and Lyndon’s completions

Olga Kharlampovich, Alexei Myasnikov (2012)

Journal of the European Mathematical Society

Similarity:

We describe finitely generated groups H universally equivalent (with constants from G in the language) to a given torsion-free relatively hyperbolic group G with free abelian parabolics. It turns out that, as in the free group case, the group H embeds into the Lyndon’s completion G [ t ] of the group G , or, equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of G [ t ] containing G is universally equivalent to G . Since finitely...

Some interpretations of the ( k , p ) -Fibonacci numbers

Natalia Paja, Iwona Włoch (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the ( k , p ) -Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the ( k , p ) -Fibonacci numbers.

On the golden number and Fibonacci type sequences

Eugeniusz Barcz (2019)

Annales Universitatis Paedagogicae Cracoviensis | Studia ad Didacticam Mathematicae Pertinentia

Similarity:

The paper presents, among others, the golden number ϕ as the limit of the quotient of neighboring terms of the Fibonacci and Fibonacci type sequence by means of a fixed point of a mapping of a certain interval with the help of Edelstein’s theorem. To demonstrate the equality  , where f n is n -th Fibonacci number also the formula from Corollary has been applied. It was obtained using some relationships between Fibonacci and Lucas numbers, which were previously justified.

On the intersection of two distinct k -generalized Fibonacci sequences

Diego Marques (2012)

Mathematica Bohemica

Similarity:

Let k 2 and define F ( k ) : = ( F n ( k ) ) n 0 , the k -generalized Fibonacci sequence whose terms satisfy the recurrence relation F n ( k ) = F n - 1 ( k ) + F n - 2 ( k ) + + F n - k ( k ) , with initial conditions 0 , 0 , , 0 , 1 ( k terms) and such that the first nonzero term is F 1 ( k ) = 1 . The sequences F : = F ( 2 ) and T : = F ( 3 ) are the known Fibonacci and Tribonacci sequences, respectively. In 2005, Noe and Post made a conjecture related to the possible solutions of the Diophantine equation F n ( k ) = F m ( ) . In this note, we use transcendental tools to provide a general method for finding the intersections F ( k ) F ( m ) which gives...

Artinian automorphisms of infinite groups

Antonella Leone (2006)

Bollettino dell'Unione Matematica Italiana

Similarity:

An automorphism a of a group G is called an artinian automorphism if for every strictly descending chain H 1 > H 2 > > H n > of subgroups of G there exists a positive integer m such that ( H n ) a = H n for every n m . In this paper we show that in many cases the group of all artinian automorphisms of G coincides with the group of all power automorphisms of G .

On the Davenport constant and group algebras

Daniel Smertnig (2010)

Colloquium Mathematicae

Similarity:

For a finite abelian group G and a splitting field K of G, let (G,K) denote the largest integer l ∈ ℕ for which there is a sequence S = g · . . . · g l over G such that ( X g - a ) · . . . · ( X g l - a l ) 0 K [ G ] for all a , . . . , a l K × . If (G) denotes the Davenport constant of G, then there is the straightforward inequality (G) - 1 ≤ (G,K). Equality holds for a variety of groups, and a conjecture of W. Gao et al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups G for...

On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

Gaurav Mittal, Rajendra Kumar Sharma (2021)

Mathematica Bohemica

Similarity:

We characterize the unit group of semisimple group algebras 𝔽 q G of some non-metabelian groups, where F q is a field with q = p k elements for p prime and a positive integer k . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group ( ( C 3 × C 3 ) C 3 ) C 2 of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

Groups of given intermediate word growth

Laurent Bartholdi, Anna Erschler (2014)

Annales de l’institut Fourier

Similarity:

We show that there exists a finitely generated group of growth f for all functions f : + + satisfying f ( 2 R ) f ( R ) 2 f ( η + R ) for all R large enough and η + 2 . 4675 the positive root of X 3 - X 2 - 2 X - 4 . Set α - = log 2 / log η + 0 . 7674 ; then all functions that grow uniformly faster than exp ( R α - ) are realizable as the growth of a group. We also give a family of sum-contracting branched groups of growth exp ( R α ) for a dense set of α [ α - , 1 ] .