Displaying similar documents to “Necessary and sufficient condition for the existence of a Fréchet mean on the circle”

Optional splitting formula in a progressively enlarged filtration

Shiqi Song (2014)

ESAIM: Probability and Statistics

Similarity:

Let 𝔽 F be a filtration andbe a random time. Let 𝔾 G be the progressive enlargement of 𝔽 F with. We study the following formula, called the optional splitting formula: For any 𝔾 G-optional process, there exists an 𝔽 F-optional process and a function defined on [0∞] × (ℝ × ) being [ 0 , ] 𝒪 ( 𝔽 ) ℬ[0,∞]⊗x1d4aa;(F) measurable, such that Y = Y ' 1 [ 0 , τ ) + Y ' ' ( τ ) 1 [ τ , ) . Y=Y′1[0,τ)+Y′′(τ)1[τ,∞). (This formula can also be formulated for multiple random times ...

A new kind of augmentation of filtrations

Joseph Najnudel, Ashkan Nikeghbali (2011)

ESAIM: Probability and Statistics

Similarity:

Let (Ω, , ( t ), ) be a filtered probability space satisfying the usual assumptions: it is usually not possible to extend to (the-algebra generated by ( t )) a coherent family of probability measures ( t ) indexed by , each of them being defined on t . It is known that for instance, on the Wiener space, this extension problem has a positive answer if one takes the filtration generated by the coordinate process, made right-continuous, but can have a negative...

Some problems in automata theory which depend on the models of set theory

Olivier Finkel (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

We prove that some fairly basic questions on automata reading infinite words depend on the models of the axiomatic system ZFC. It is known that there are only three possibilities for the cardinality of the complement of an -language L ( 𝒜 ) (x1d49c;) accepted by a Büchi 1-counter automaton 𝒜 x1d49c;. We prove the following surprising result: there exists a 1-counter Büchi automaton 𝒜 x1d49c; such that the cardinality of the complement L ( 𝒜 ) - (𝒜) of the -language...

Gamma-convergence results for phase-field approximations of the 2D-Euler Elastica Functional

Luca Mugnai (2013)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We establish some new results about the -limit, with respect to the -topology, of two different (but related) phase-field approximations { } , { ˜ } ℰ ε ε ,   x10ff65; ℰ ε ε of the so-called Euler’s Elastica Bending Energy for curves in the plane. In particular we characterize the-limit as  → 0 of ℰ, and show that in general the -limits of ℰand ˜ x10ff65; ℰ ε do not coincide on indicator functions of sets with non-smooth boundary. More precisely we show that the domain of the-limit...

A new H(div)-conforming p-interpolation operator in two dimensions

Alexei Bespalov, Norbert Heuer (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper we construct a new H(div)-conforming projection-based -interpolation operator that assumes only H() 𝐇 ˜ (div, )-regularity ( > 0) on the reference element (either triangle or square) . We show that this operator is stable with respect to polynomial degrees and satisfies the commuting diagram property. We also establish an estimate for the interpolation error in the norm of the space 𝐇 ˜ (div, ), which is closely related...

Multi-Harnack smoothings of real plane branches

Pedro Daniel González Pérez, Jean-Jacques Risler (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let Δ 𝐑 2 be an integral convex polygon. G. Mikhalkin introduced the notion of, a class of real algebraic curves, defined by polynomials supported on Δ and contained in the corresponding toric surface. He proved their existence, viamethod, and that the topological type of their real parts is unique (and determined by Δ ). This paper is concerned with the description of the analogous statement in the case of a smoothing of a real plane branch ( C , 0 ) . We introduce the class ofsmoothings of ( C , 0 ) by...

Compact convex sets of the plane and probability theory

Jean-François Marckert, David Renault (2014)

ESAIM: Probability and Statistics

Similarity:

The Gauss−Minkowski correspondence in ℝ states the existence of a homeomorphism between the probability measures on [0,2] such that 0 2 π e i x d μ ( x ) = 0 ∫ 0 2 π e ix d μ ( x ) = 0 and the compact convex sets (CCS) of the plane with perimeter 1. In this article, we bring out explicit formulas relating the border of a CCS to its probability measure. As a consequence, we show that some natural operations on CCS – for example, the Minkowski sum – have natural translations in terms of probability measure operations,...

Estimate of the pressure when its gradient is the divergence of a measure. Applications

Marc Briane, Juan Casado-Díaz (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper, a W - 1 , N ' estimate of the pressure is derived when its gradient is the divergence of a matrix-valued measure on N , or on a regular bounded open set of  N . The proof is based partially on the Strauss inequality [Strauss, 23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [ 9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation result for divergence free distributions which read as the divergence of a measure, and...

Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM

Gabriel N. Gatica, Matthias Maischak, Ernst P. Stephan (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in n ( ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ω:= n Ω ¯ . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping...

Exact simulation for solutions of one-dimensional Stochastic Differential Equations with discontinuous drift

Pierre Étoré, Miguel Martinez (2014)

ESAIM: Probability and Statistics

Similarity:

In this note we propose an exact simulation algorithm for the solution of (1) d X t = d W t + b ¯ ( X t ) d t , X 0 = x , d X t = d W t + b̅ ( X t ) d t,   X 0 = x, where b ¯ is a smooth real function except at point 0 where b ¯ ( 0 + ) b ¯ ( 0 - ) (0 + ) ≠ (0 −) . The main idea is to sample an exact skeleton of Xusing an algorithm deduced from the convergence of the solutions of the skew...

Curvature measures, normal cycles and asymptotic cones

Xiang Sun, Jean-Marie Morvan (2013)

Actes des rencontres du CIRM

Similarity:

The purpose of this article is to give an overview of the theory of the and to show how to use it to define a on singular surfaces embedded in an (oriented) Euclidean space 𝔼 3 . In particular, we will introduce the notion of associated to a Borel subset of 𝔼 3 , generalizing the defined at each point of a smooth surface. For simplicity, we restrict our singular subsets to polyhedra of the 3 -dimensional Euclidean space 𝔼 3 . The coherence of the theory lies in a convergence theorem: If a...

Exact null internal controllability for the heat equation on unbounded convex domains

Viorel Barbu (2014)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The liner parabolic equation y t - 1 2 𝔻 y + F · y = 1 0 u ∂y ∂t − 1 2   Δy + F · ∇ y = 1 x1d4aa; 0 u with Neumann boundary condition on a convex open domain x1d4aa; ⊂ ℝ with smooth boundary is exactly null controllable on each finite interval if 𝒪is an open subset of x1d4aa; which contains a suitable neighbourhood of the recession cone of x1d4aa; . Here, : ℝ → ℝ is a bounded, -continuous function, and  = ∇, where is convex and coercive.

Expansions for the distribution of M-estimates with applications to the Multi-Tone problem

Christopher S. Withers, Saralees Nadarajah (2011)

ESAIM: Probability and Statistics

Similarity:

We give a stochastic expansion for estimates θ ^ that minimise the arithmetic mean of (typically independent) random functions of a known parameter. Examples include least squares estimates, maximum likelihood estimates and more generally -estimates. This is used to obtain leading cumulant coefficients of θ ^ needed for the Edgeworth expansions for the distribution and density ) to magnitude (or to for the symmetric...

On the optimality of the empirical risk minimization procedure for the convex aggregation problem

Guillaume Lecué, Shahar Mendelson (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study the performance of (ERM), with respect to the quadratic risk, in the context of , in which one wants to construct a procedure whose risk is as close as possible to the best function in the convex hull of an arbitrary finite class F . We show that ERM performed in the convex hull of F is an optimal aggregation procedure for the convex aggregation problem. We also show that if this procedure is used for the problem of model selection aggregation, in which one wants to mimic the...

Limit theorems for stationary Markov processes with L2-spectral gap

Déborah Ferré, Loïc Hervé, James Ledoux (2012)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let ( X t , Y t ) t 𝕋 be a discrete or continuous-time Markov process with state space 𝕏 × d where 𝕏 is an arbitrary measurable set. Its transition semigroup is assumed to be additive with respect to the second component, i.e. ( X t , Y t ) t 𝕋 is assumed to be a Markov additive process. In particular, this implies that the first component ( X t ) t 𝕋 is also a Markov process. Markov random walks or additive functionals of a Markov process are special instances of Markov additive processes. In this paper, the process ( Y t ) t 𝕋 is shown...

A proof of Reidemeister-Singer’s theorem by Cerf’s methods

François Laudenbach (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Heegaard splittings and Heegaard diagrams of a closed 3-manifold M are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on M . We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when dim M > 2 . The main tool that we introduce is an which could be useful elsewhere.

Scaling laws for non-euclidean plates and the W 2 , 2 isometric immersions of riemannian metrics

Marta Lewicka, Mohammad Reza Pakzad (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Recall that a smooth Riemannian metric on a simply connected domain can be realized as the pull-back metric of an orientation preserving deformation if and only if the associated Riemann curvature tensor vanishes identically. When this condition fails, one seeks a deformation yielding the closest metric realization. We set up a variational formulation of this problem by introducing the non-Euclidean version of the nonlinear elasticity functional, and establish its -convergence under...

Constructive quantization: approximation by empirical measures

Steffen Dereich, Michael Scheutzow, Reik Schottstedt (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this article, we study the approximation of a probability measure μ on d by its empirical measure μ ^ N interpreted as a random quantization. As error criterion we consider an averaged p th moment Wasserstein metric. In the case where 2 p l t ; d , we establish fine upper and lower bounds for the error, a. Moreover, we provide a universal estimate based on moments, a . In particular, we show that quantization by empirical measures is of optimal order under weak assumptions.

The jacobian map, the jacobian group and the group of automorphisms of the Grassmann algebra

Vladimir V. Bavula (2010)

Bulletin de la Société Mathématique de France

Similarity:

There are nontrivial dualities and parallels between polynomial algebras and the Grassmann algebras (e.g., the Grassmann algebras are dual of polynomial algebras as quadratic algebras). This paper is an attempt to look at the Grassmann algebras at the angle of the Jacobian conjecture for polynomial algebras (which is the question/conjecture about the Jacobian set– the set of all algebra endomorphisms of a polynomial algebra with the Jacobian...

A priori bounds for some infinitely renormalizable quadratics: II. Decorations

Jeremy Kahn, Mikhail Lyubich (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

A decoration of the Mandelbrot set M is a part of M cut off by two external rays landing at some tip of a satellite copy of M attached to the main cardioid. In this paper we consider infinitely renormalizable quadratic polynomials satisfying the decoration condition, which means that the combinatorics of the renormalization operators involved is selected from a finite family of decorations. For this class of maps we prove bounds. They imply local connectivity of the corresponding Julia...

Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects

Hedy Attouch, Paul-Émile Maingé (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In the setting of a real Hilbert space , we investigate the asymptotic behavior, as time  goes to infinity, of trajectories of second-order evolution equations            () + u ˙ () + (()) + (()) = 0, where is the gradient operator of a convex differentiable potential function : ,: is a maximal monotone operator which is assumed to be-cocoercive, and > 0 is a damping parameter. Potential and non-potential effects are associated...

Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations

Antoine Gloria (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the -dimensional lattice d with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector...

Waring’s problem for Beatty sequences and a local to global principle

William D. Banks, Ahmet M. Güloğlu, Robert C. Vaughan (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We investigate in various ways the representation of a large natural number N as a sum of s positive k -th powers of numbers from a fixed Beatty sequence. , a very general form of the local to global principle is established in additive number theory. Although the proof is very short, it depends on a deep theorem of M. Kneser.

Coarse quantization for random interleaved sampling of bandlimited signals

Alexander M. Powell, Jared Tanner, Yang Wang, Özgür Yılmaz (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta analog-to-digital conversion is investigated. Let be a bandlimited signal that is sampled on a collection of interleaved grids  { +  } with offsets { T n } n = 1 N [ 0 , T ] T n n = 1 N ⊂ [ 0 ,T ] . If the offsets are chosen independently and uniformly at random from  [0]  and if the sample values of are quantized with a first order Sigma-Delta algorithm, then with high probability the quantization...

Higher-order phase transitions with line-tension effect

Bernardo Galvão-Sousa (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The behavior of energy minimizers at the boundary of the domain is of great importance in the Van de Waals-Cahn-Hilliard theory for fluid-fluid phase transitions, since it describes the effect of the container walls on the configuration of the liquid. This problem, also known as the liquid-drop problem, was studied by Modica in [ 4 (1987) 487–512], and in a different form by Alberti in [ is a scalar density function and and are double-well potentials, the exact scaling...