The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Sur la structure galoisienne du groupe des unités d’un corps abélien de type ( p , p )

Quelques « formules de masse  » raffinées en degré premier

Chandan Singh Dalawat (2012)

Bulletin de la Société Mathématique de France

Similarity:

Pour un corps local à corps résiduel fini de caractéristique  p , nous donnons quelques raffinements de la formule de masse de Serre en degré  p qui nous permettent de calculer par exemple la contribution des extensions cycliques, ou celles dont la clôture galoisienne a pour groupe d’automorphismes un groupe donné à l’avance, ou possède des propriétés de ramification également données à l’avance.

Sur le rang des variétés abéliennes sur un corps de fonctions

Amílcar Pacheco (2014)

Publications mathématiques de Besançon

Similarity:

Ce texte est un survey concernant la question du rang d’une variété abélienne A sur un corps de fonctions K en une variable sur un corps de base k . Il s’agit non seulement de discuter une borne supérieure pour ce rang, mais aussi d’étudier le comportement de cette borne si on prend une extension abélienne finie L de K . On se demande aussi : que se passe-t-il quand on enlève cette dernière hypothèse ? Dans un cas particulier, on discute de la validité d’un analogue du théorème de Lang-Néron....

Sur certaines extensions de SU ( n , 4 )

Marguerite-Marie Virotte-Ducharme (2001)

Bulletin de la Société Mathématique de France

Similarity:

Dans cet article, on étudie certaines extensions scindées et non scindées des groupes unitaires SU ( n , 4 ) , pour n 4 , sur le corps 𝔽 4 par des 2 -groupes extra-spéciaux. Les extensions ainsi obtenues sont des groupes de 3 -transpositions, on en donne des présentations fischériennes.

Groupe de Brauer non ramifié d’espaces homogènes de tores

Jean-Louis Colliot-Thélène (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Soient k un corps et X une k -variété projective et lisse. Si X est géométriquement rationnelle, on dispose d’une application injective du quotient de groupes de Brauer Br ( X ) / Br ( k ) dans le premier groupe de cohomologie galoisienne du réseau défini par le groupe de Picard géométrique de X . Dans cette note on donne des cas où cette application est toujours surjective. Pour les espaces homogènes de certains tores algébriques, on donne des générateurs explicites dans Br ( X ) . On applique cela à l’étude du...