Displaying similar documents to “Sur la structure galoisienne du groupe des unités d’un corps abélien de type ( p , p )

Quelques « formules de masse  » raffinées en degré premier

Chandan Singh Dalawat (2012)

Bulletin de la Société Mathématique de France

Similarity:

Pour un corps local à corps résiduel fini de caractéristique  p , nous donnons quelques raffinements de la formule de masse de Serre en degré  p qui nous permettent de calculer par exemple la contribution des extensions cycliques, ou celles dont la clôture galoisienne a pour groupe d’automorphismes un groupe donné à l’avance, ou possède des propriétés de ramification également données à l’avance.

Sur le rang des variétés abéliennes sur un corps de fonctions

Amílcar Pacheco (2014)

Publications mathématiques de Besançon

Similarity:

Ce texte est un survey concernant la question du rang d’une variété abélienne A sur un corps de fonctions K en une variable sur un corps de base k . Il s’agit non seulement de discuter une borne supérieure pour ce rang, mais aussi d’étudier le comportement de cette borne si on prend une extension abélienne finie L de K . On se demande aussi : que se passe-t-il quand on enlève cette dernière hypothèse ? Dans un cas particulier, on discute de la validité d’un analogue du théorème de Lang-Néron....

Sur certaines extensions de SU ( n , 4 )

Marguerite-Marie Virotte-Ducharme (2001)

Bulletin de la Société Mathématique de France

Similarity:

Dans cet article, on étudie certaines extensions scindées et non scindées des groupes unitaires SU ( n , 4 ) , pour n 4 , sur le corps 𝔽 4 par des 2 -groupes extra-spéciaux. Les extensions ainsi obtenues sont des groupes de 3 -transpositions, on en donne des présentations fischériennes.

Groupe de Brauer non ramifié d’espaces homogènes de tores

Jean-Louis Colliot-Thélène (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Soient k un corps et X une k -variété projective et lisse. Si X est géométriquement rationnelle, on dispose d’une application injective du quotient de groupes de Brauer Br ( X ) / Br ( k ) dans le premier groupe de cohomologie galoisienne du réseau défini par le groupe de Picard géométrique de X . Dans cette note on donne des cas où cette application est toujours surjective. Pour les espaces homogènes de certains tores algébriques, on donne des générateurs explicites dans Br ( X ) . On applique cela à l’étude du...