The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On R -conjugate-permutability of Sylow subgroups”

Some results on Sylow numbers of finite groups

Yang Liu, Jinjie Zhang (2024)

Czechoslovak Mathematical Journal

Similarity:

We study the group structure in terms of the number of Sylow p -subgroups, which is denoted by n p ( G ) . The first part is on the group structure of finite group G such that n p ( G ) = n p ( G / N ) , where N is a normal subgroup of G . The second part is on the average Sylow number asn ( G ) and we prove that if G is a finite nonsolvable group with asn ( G ) < 39 / 4 and asn ( G ) 29 / 4 , then G / F ( G ) A 5 , where F ( G ) is the Fitting subgroup of G . In the third part, we study the nonsolvable group with small sum of Sylow numbers.

On σ -permutably embedded subgroups of finite groups

Chenchen Cao, Li Zhang, Wenbin Guo (2019)

Czechoslovak Mathematical Journal

Similarity:

Let σ = { σ i : i I } be some partition of the set of all primes , G be a finite group and σ ( G ) = { σ i : σ i π ( G ) } . A set of subgroups of G is said to be a complete Hall σ -set of G if every non-identity member of is a Hall σ i -subgroup of G and contains exactly one Hall σ i -subgroup of G for every σ i σ ( G ) . G is said to be σ -full if G possesses a complete Hall σ -set. A subgroup H of G is σ -permutable in G if G possesses a complete Hall σ -set such that H A x = A x H for all A and all x G . A subgroup H of G is σ -permutably embedded in...

A note on sumsets of subgroups in * p

Derrick Hart (2013)

Acta Arithmetica

Similarity:

Let A be a multiplicative subgroup of * p . Define the k-fold sumset of A to be k A = x 1 + . . . + x k : x i A , 1 i k . We show that 6 A * p for | A | > p 11 / 23 + ϵ . In addition, we extend a result of Shkredov to show that | 2 A | | A | 8 / 5 - ϵ for | A | p 5 / 9 .

Every 2 -group with all subgroups normal-by-finite is locally finite

Enrico Jabara (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G has all of its subgroups normal-by-finite if H / H G is finite for all subgroups H of G . The Tarski-groups provide examples of p -groups ( p a “large” prime) of nonlocally finite groups in which every subgroup is normal-by-finite. The aim of this paper is to prove that a 2 -group with every subgroup normal-by-finite is locally finite. We also prove that if | H / H G | 2 for every subgroup H of G , then G contains an Abelian subgroup of index at most 8 .

Finite p -nilpotent groups with some subgroups weakly -supplemented

Liushuan Dong (2020)

Czechoslovak Mathematical Journal

Similarity:

Suppose that G is a finite group and H is a subgroup of G . Subgroup H is said to be weakly -supplemented in G if there exists a subgroup B of G such that (1) G = H B , and (2) if H 1 / H G is a maximal subgroup of H / H G , then H 1 B = B H 1 < G , where H G is the largest normal subgroup of G contained in H . We fix in every noncyclic Sylow subgroup P of G a subgroup D satisfying 1 < | D | < | P | and study the p -nilpotency of G under the assumption that every subgroup H of P with | H | = | D | is weakly -supplemented in G . Some recent results are generalized. ...

On solvability of finite groups with some s s -supplemented subgroups

Jiakuan Lu, Yanyan Qiu (2015)

Czechoslovak Mathematical Journal

Similarity:

A subgroup H of a finite group G is said to be s s -supplemented in G if there exists a subgroup K of G such that G = H K and H K is s -permutable in K . In this paper, we first give an example to show that the conjecture in A. A. Heliel’s paper (2014) has negative solutions. Next, we prove that a finite group G is solvable if every subgroup of odd prime order of G is s s -supplemented in G , and that G is solvable if and only if every Sylow subgroup of odd order of G is s s -supplemented in G . These results...

On the conjugate type vector and the structure of a normal subgroup

Ruifang Chen, Lujun Guo (2022)

Czechoslovak Mathematical Journal

Similarity:

Let N be a normal subgroup of a group G . The structure of N is given when the G -conjugacy class sizes of N is a set of a special kind. In fact, we give the structure of a normal subgroup N under the assumption that the set of G -conjugacy class sizes of N is ( p 1 n 1 a 1 n 1 , , p 1 1 a 11 , 1 ) × × ( p r n r a r n r , , p r 1 a r 1 , 1 ) , where r > 1 , n i > 1 and p i j are distinct primes for i { 1 , 2 , , r } , j { 1 , 2 , , n i } .

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

The p -nilpotency of finite groups with some weakly pronormal subgroups

Jianjun Liu, Jian Chang, Guiyun Chen (2020)

Czechoslovak Mathematical Journal

Similarity:

For a finite group G and a fixed Sylow p -subgroup P of G , Ballester-Bolinches and Guo proved in 2000 that G is p -nilpotent if every element of P G ' with order p lies in the center of N G ( P ) and when p = 2 , either every element of P G ' with order 4 lies in the center of N G ( P ) or P is quaternion-free and N G ( P ) is 2 -nilpotent. Asaad introduced weakly pronormal subgroup of G in 2014 and proved that G is p -nilpotent if every element of P with order p is weakly pronormal in G and when p = 2 , every element of P with...