Displaying similar documents to “Deformation theory and finite simple quotients of triangle groups I”

The density of representation degrees

Martin Liebeck, Dan Segal, Aner Shalev (2012)

Journal of the European Mathematical Society

Similarity:

For a group G and a positive real number x , define d G ( x ) to be the number of integers less than x which are dimensions of irreducible complex representations of G . We study the asymptotics of d G ( x ) for algebraic groups, arithmetic groups and finitely generated linear groups. In particular we prove an “alternative” for finitely generated linear groups G in characteristic zero, showing that either there exists α > 0 such that d G ( x ) > x α for all large x , or G is virtually abelian (in which case d G ( x ) is bounded). ...

On the Davenport constant and group algebras

Daniel Smertnig (2010)

Colloquium Mathematicae

Similarity:

For a finite abelian group G and a splitting field K of G, let (G,K) denote the largest integer l ∈ ℕ for which there is a sequence S = g · . . . · g l over G such that ( X g - a ) · . . . · ( X g l - a l ) 0 K [ G ] for all a , . . . , a l K × . If (G) denotes the Davenport constant of G, then there is the straightforward inequality (G) - 1 ≤ (G,K). Equality holds for a variety of groups, and a conjecture of W. Gao et al. states that equality holds for all groups. We offer further groups for which equality holds, but we also give the first examples of groups G for...

Limits of relatively hyperbolic groups and Lyndon’s completions

Olga Kharlampovich, Alexei Myasnikov (2012)

Journal of the European Mathematical Society

Similarity:

We describe finitely generated groups H universally equivalent (with constants from G in the language) to a given torsion-free relatively hyperbolic group G with free abelian parabolics. It turns out that, as in the free group case, the group H embeds into the Lyndon’s completion G [ t ] of the group G , or, equivalently, H embeds into a group obtained from G by finitely many extensions of centralizers. Conversely, every subgroup of G [ t ] containing G is universally equivalent to G . Since finitely...

On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

Gaurav Mittal, Rajendra Kumar Sharma (2021)

Mathematica Bohemica

Similarity:

We characterize the unit group of semisimple group algebras 𝔽 q G of some non-metabelian groups, where F q is a field with q = p k elements for p prime and a positive integer k . In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group ( ( C 3 × C 3 ) C 3 ) C 2 of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.

A problem of Kollár and Larsen on finite linear groups and crepant resolutions

Robert Guralnick, Pham Tiep (2012)

Journal of the European Mathematical Society

Similarity:

The notion of age of elements of complex linear groups was introduced by M. Reid and is of importance in algebraic geometry, in particular in the study of crepant resolutions and of quotients of Calabi–Yau varieties. In this paper, we solve a problem raised by J. Kollár and M. Larsen on the structure of finite irreducible linear groups generated by elements of age 1 . More generally, we bound the dimension of finite irreducible linear groups generated by elements of bounded deviation....

The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra K. Sharma (2023)

Mathematica Bohemica

Similarity:

We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two...

On the structural theory of  II 1 factors of negatively curved groups

Ionut Chifan, Thomas Sinclair (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Ozawa showed in [21] that for any i.c.c. hyperbolic group, the associated group factor L Γ is solid. Developing a new approach that combines some methods of Peterson [29], Ozawa and Popa [27, 28], and Ozawa [25], we strengthen this result by showing that L Γ is strongly solid. Using our methods in cooperation with a cocycle superrigidity result of Ioana [12], we show that profinite actions of lattices in  Sp ( n , 1 ) , n 2 , are virtually W * -superrigid.

Permutability of centre-by-finite groups

Brunetto Piochi (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Let G be a group and m be an integer greater than or equal to 2 . G is said to be m -permutable if every product of m elements can be reordered at least in one way. We prove that, if G has a centre of finite index z , then G is ( 1 + [ z / 2 ] ) -permutable. More bounds are given on the least m such that G is m -permutable.

Coxeter group actions on the complement of hyperplanes and special involutions

Giovanni Felder, A. Veselov (2005)

Journal of the European Mathematical Society

Similarity:

We consider both standard and twisted actions of a (real) Coxeter group G on the complement G to the complexified reflection hyperplanes by combining the reflections with complex conjugation. We introduce a natural geometric class of special involutions in G and give explicit formulae which describe both actions on the total cohomology H * ( G , 𝒞 ) in terms of these involutions. As a corollary we prove that the corresponding twisted representation is regular only for the symmetric group S n , the...

Finite groups whose all proper subgroups are 𝒞 -groups

Pengfei Guo, Jianjun Liu (2018)

Czechoslovak Mathematical Journal

Similarity:

A group G is said to be a 𝒞 -group if for every divisor d of the order of G , there exists a subgroup H of G of order d such that H is normal or abnormal in G . We give a complete classification of those groups which are not 𝒞 -groups but all of whose proper subgroups are 𝒞 -groups.

Groups of given intermediate word growth

Laurent Bartholdi, Anna Erschler (2014)

Annales de l’institut Fourier

Similarity:

We show that there exists a finitely generated group of growth f for all functions f : + + satisfying f ( 2 R ) f ( R ) 2 f ( η + R ) for all R large enough and η + 2 . 4675 the positive root of X 3 - X 2 - 2 X - 4 . Set α - = log 2 / log η + 0 . 7674 ; then all functions that grow uniformly faster than exp ( R α - ) are realizable as the growth of a group. We also give a family of sum-contracting branched groups of growth exp ( R α ) for a dense set of α [ α - , 1 ] .

Characterization of the alternating groups by their order and one conjugacy class length

Alireza Khalili Asboei, Reza Mohammadyari (2016)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group, and let N ( G ) be the set of conjugacy class sizes of G . By Thompson’s conjecture, if L is a finite non-abelian simple group, G is a finite group with a trivial center, and N ( G ) = N ( L ) , then L and G are isomorphic. Recently, Chen et al. contributed interestingly to Thompson’s conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li’s PhD dissertation)....

Product decompositions of quasirandom groups and a Jordan type theorem

Nikolay Nikolov, László Pyber (2011)

Journal of the European Mathematical Society

Similarity:

We first note that a result of Gowers on product-free sets in groups has an unexpected consequence: If k is the minimal degree of a representation of the finite group G , then for every subset B of G with | B | > | G | / k 1 / 3 we have B 3 = G . We use this to obtain improved versions of recent deep theorems of Helfgott and of Shalev concerning product decompositions of finite simple groups, with much simpler proofs. On the other hand, we prove a version of Jordan’s theorem which implies that if k 2 , then G has a...

Obstruction sets and extensions of groups

Francesca Balestrieri (2016)

Acta Arithmetica

Similarity:

Let X be a nice variety over a number field k. We characterise in pure “descent-type” terms some inequivalent obstruction sets refining the inclusion X ( k ) é t , B r X ( k ) B r . In the first part, we apply ideas from the proof of X ( k ) é t , B r = X ( k ) k by Skorobogatov and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the second part, we show that if k are such that E x t ( , k ) , then X ( k ) = X ( k ) . This allows us to conclude, among other things, that X ( k ) é t , B r = X ( k ) k and X ( k ) S o l , B r = X ( k ) S o l k .

On NIP and invariant measures

Ehud Hrushovski, Anand Pillay (2011)

Journal of the European Mathematical Society

Similarity:

We study forking, Lascar strong types, Keisler measures and definable groups, under an assumption of NIP (not the independence property), continuing aspects of the paper [16]. Among key results are (i) if p = tp ( b / A ) does not fork over A then the Lascar strong type of b over A coincides with the compact strong type of b over A and any global nonforking extension of p is Borel definable over bdd ( A ) , (ii) analogous statements for Keisler measures and definable groups, including the fact that G 000 = G 00 for G ...

Group algebras whose groups of normalized units have exponent 4

Victor Bovdi, Mohammed Salim (2018)

Czechoslovak Mathematical Journal

Similarity:

We give a full description of locally finite 2 -groups G such that the normalized group of units of the group algebra F G over a field F of characteristic 2 has exponent 4 .

The Ribes-Zalesskii property of some one relator groups

Gilbert Mantika, Narcisse Temate-Tangang, Daniel Tieudjo (2022)

Archivum Mathematicum

Similarity:

The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 H k of finitely generated subgroups H 1 , H 2 , , H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize...