Displaying similar documents to “Factorization of point configurations, cyclic covers, and conformal blocks”

Separation properties for self-conformal sets

Yuan-Ling Ye (2002)

Studia Mathematica

Similarity:

For a one-to-one self-conformal contractive system w j j = 1 m on d with attractor K and conformality dimension α, Peres et al. showed that the open set condition and strong open set condition are both equivalent to 0 < α ( K ) < . We give a simple proof of this result as well as discuss some further properties related to the separation condition.

Lower quantization coefficient and the F-conformal measure

Mrinal Kanti Roychowdhury (2011)

Colloquium Mathematicae

Similarity:

Let F = f ( i ) : 1 i N be a family of Hölder continuous functions and let φ i : 1 i N be a conformal iterated function system. Lindsay and Mauldin’s paper [Nonlinearity 15 (2002)] left an open question whether the lower quantization coefficient for the F-conformal measure on a conformal iterated funcion system satisfying the open set condition is positive. This question was positively answered by Zhu. The goal of this paper is to present a different proof of this result.

On the conformal gauge of a compact metric space

Matias Carrasco Piaggio (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In this article we study the Ahlfors regular conformal gauge of a compact metric space ( X , d ) , and its conformal dimension dim A R ( X , d ) . Using a sequence of finite coverings of  ( X , d ) , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute dim A R ( X , d ) using the critical exponent Q N associated to the combinatorial modulus.

Conformal Killing graphs in foliated Riemannian spaces with density: rigidity and stability

Marco L. A. Velásquez, André F. A. Ramalho, Henrique F. de Lima, Márcio S. Santos, Arlandson M. S. Oliveira (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we investigate the geometry of conformal Killing graphs in a Riemannian manifold M ¯ f n + 1 endowed with a weight function f and having a closed conformal Killing vector field V with conformal factor ψ V , that is, graphs constructed through the flow generated by V and which are defined over an integral leaf of the foliation V orthogonal to V . For such graphs, we establish some rigidity results under appropriate constraints on the f -mean curvature. Afterwards, we obtain some stability...

Note on cyclic decompositions of complete bipartite graphs into cubes

Dalibor Fronček (1999)

Discussiones Mathematicae Graph Theory

Similarity:

So far, the smallest complete bipartite graph which was known to have a cyclic decomposition into cubes Q d of a given dimension d was K d 2 d - 1 , d 2 d - 2 . We improve this result and show that also K d 2 d - 2 , d 2 d - 2 allows a cyclic decomposition into Q d . We also present a cyclic factorization of K 8 , 8 into Q₄.

Conformal measures and matings between Kleinian groups and quadratic polynomials

Marianne Freiberger (2007)

Fundamenta Mathematicae

Similarity:

Following results of McMullen concerning rational maps, we show that the limit set of matings between a certain class of representations of C₂ ∗ C₃ and quadratic polynomials carries δ-conformal measures, and that if the correspondence is geometrically finite then the real number δ is equal to the Hausdorff dimension of the limit set. Moreover, when f is the limit of a pinching deformation f t 0 t < 1 we give sufficient conditions for the dynamical convergence of f t .

Conformal harmonic forms, Branson–Gover operators and Dirichlet problem at infinity

Erwann Aubry, Colin Guillarmou (2011)

Journal of the European Mathematical Society

Similarity:

For odd-dimensional Poincaré–Einstein manifolds ( X n + 1 , g ) , we study the set of harmonic k -forms (for k < n / 2 ) which are C m (with m ) on the conformal compactification X ¯ of X . This set is infinite-dimensional for small m but it becomes finite-dimensional if m is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology H k ( X ¯ , X ¯ ) and the kernel of the Branson–Gover [3] differential operators ( L k , G k ) on the conformal infinity ( X ¯ , [ h 0 ] ) . We also relate the set of C n - 2 k + 1 ( Λ k ( X ¯ ) ) forms in the kernel of d + δ g ...

A classification theorem on Fano bundles

Roberto Muñoz, Luis E. Solá Conde, Gianluca Occhetta (2014)

Annales de l’institut Fourier

Similarity:

In this paper we classify rank two Fano bundles on Fano manifolds satisfying H 2 ( X , ) H 4 ( X , ) . The classification is obtained via the computation of the nef and pseudoeffective cones of the projectivization ( ) , that allows us to obtain the cohomological invariants of X and . As a by-product we discuss Fano bundles associated to congruences of lines, showing that their varieties of minimal rational tangents may have several linear components.

Universal Taylor series, conformal mappings and boundary behaviour

Stephen J. Gardiner (2014)

Annales de l’institut Fourier

Similarity:

A holomorphic function f on a simply connected domain Ω is said to possess a universal Taylor series about a point in Ω if the partial sums of that series approximate arbitrary polynomials on arbitrary compacta K outside Ω (provided only that K has connected complement). This paper shows that this property is not conformally invariant, and, in the case where Ω is the unit disc, that such functions have extreme angular boundary behaviour.

The almost Einstein operator for ( 2 , 3 , 5 ) distributions

Katja Sagerschnig, Travis Willse (2017)

Archivum Mathematicum

Similarity:

For the geometry of oriented ( 2 , 3 , 5 ) distributions ( M , ) , which correspond to regular, normal parabolic geometries of type ( G 2 , P ) for a particular parabolic subgroup P < G 2 , we develop the corresponding tractor calculus and use it to analyze the first BGG operator Θ 0 associated to the 7 -dimensional irreducible representation of G 2 . We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions...

On a theorem of Lindelof

Vladimir Ya. Gutlyanskii, Olli Martio, Vladimir Ryazanov (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We give a quasiconformal version of the proof for the classical Lindelof theorem: Let f map the unit disk 𝔻 conformally onto the inner domain of a Jordan curve 𝒞 : Then 𝒞 is smooth if and only if arg f ' ( z ) has a continuous extension to 𝔻 ¯ . Our proof does not use the Poisson integral representation of harmonic functions in the unit disk.

Kannan-type cyclic contraction results in 2 -Menger space

Binayak S. Choudhury, Samir Kumar BHANDARI (2016)

Mathematica Bohemica

Similarity:

In this paper we establish Kannan-type cyclic contraction results in probabilistic 2-metric spaces. We use two different types of t -norm in our theorems. In our first theorem we use a Hadzic-type t -norm. We use the minimum t -norm in our second theorem. We prove our second theorem by different arguments than the first theorem. A control function is used in our second theorem. These results generalize some existing results in probabilistic 2-metric spaces. Our results are illustrated with...

𝒟 -bundles and integrable hierarchies

David Ben-Zvi, Thomas Nevins (2011)

Journal of the European Mathematical Society

Similarity:

We study the geometry of 𝒟 -bundles—locally projective 𝒟 -modules—on algebraic curves, and apply them to the study of integrable hierarchies, specifically the multicomponent Kadomtsev–Petviashvili (KP) and spin Calogero–Moser (CM) hierarchies. We show that KP hierarchies have a geometric description as flows on moduli spaces of 𝒟 -bundles; in particular, we prove that the local structure of 𝒟 -bundles is captured by the full Sato Grassmannian. The rational, trigonometric, and elliptic solutions...

Linear direct connections

Jan Kubarski, Nicolae Teleman (2007)

Banach Center Publications

Similarity:

In this paper we study the geometry of direct connections in smooth vector bundles (see N. Teleman [Tn.3]); we show that the infinitesimal part, τ , of a direct connection τ is a linear connection. We determine the curvature tensor of the associated linear connection τ . As an application of these results, we present a direct proof of N. Teleman’s Theorem 6.2 [Tn.3], which shows that it is possible to represent the Chern character of smooth vector bundles as the periodic cyclic homology...