The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Torsion points on families of simple abelian surfaces and Pell's equation over polynomial rings (with an appendix by E. V. Flynn)”

Number of solutions in a box of a linear equation in an Abelian group

Maciej Zakarczemny (2016)

Colloquium Mathematicae

Similarity:

For every finite Abelian group Γ and for all g , a , . . . , a k Γ , if there exists a solution of the equation i = 1 k a i x i = g in non-negative integers x i b i , where b i are positive integers, then the number of such solutions is estimated from below in the best possible way.

Non-supersingular hyperelliptic jacobians

Yuri G. Zarhin (2004)

Bulletin de la Société Mathématique de France

Similarity:

Let K be a field of odd characteristic p , let f ( x ) be an irreducible separable polynomial of degree n 5 with big Galois group (the symmetric group or the alternating group). Let C be the hyperelliptic curve y 2 = f ( x ) and J ( C ) its jacobian. We prove that J ( C ) does not have nontrivial endomorphisms over an algebraic closure of K if either n 7 or p 3 .

On coverings of simple abelian varieties

Olivier Debarre (2006)

Bulletin de la Société Mathématique de France

Similarity:

To any finite covering f : Y X of degree d between smooth complex projective manifolds, one associates a vector bundle E f of rank d - 1 on X whose total space contains Y . It is known that E f is ample when X is a projective space ([Lazarsfeld 1980]), a Grassmannian ([Manivel 1997]), or a Lagrangian Grassmannian ([Kim Maniel 1999]). We show an analogous result when X is a simple abelian variety and f does not factor through any nontrivial isogeny X ' X . This result is obtained by showing that E f is M -regular...

Characterization of the torsion of the Jacobians of two families of hyperelliptic curves

Tomasz Jędrzejak (2013)

Acta Arithmetica

Similarity:

Consider the families of curves C n , A : y ² = x + A x and C n , A : y ² = x + A where A is a nonzero rational. Let J n , A and J n , A denote their respective Jacobian varieties. The torsion points of C 3 , A ( ) and C 3 , A ( ) are well known. We show that for any nonzero rational A the torsion subgroup of J 7 , A ( ) is a 2-group, and for A ≠ 4a⁴,-1728,-1259712 this subgroup is equal to J 7 , A ( ) [ 2 ] (for a excluded values of A, with the possible exception of A = -1728, this group has a point of order 4). This is a variant of the corresponding results for J 3 , A (A ≠ 4) and J 5 , A . We...

Self-small products of abelian groups

Josef Dvořák, Jan Žemlička (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let A and B be two abelian groups. The group A is called B -small if the covariant functor Hom ( A , - ) commutes with all direct sums B ( κ ) and A is self-small provided it is A -small. The paper characterizes self-small products applying developed closure properties of the classes of relatively small groups. As a consequence, self-small products of finitely generated abelian groups are described.

Invariance of the parity conjecture for p -Selmer groups of elliptic curves in a D 2 p n -extension

Thomas de La Rochefoucauld (2011)

Bulletin de la Société Mathématique de France

Similarity:

We show a p -parity result in a D 2 p n -extension of number fields L / K ( p 5 ) for the twist 1 η τ : W ( E / K , 1 η τ ) = ( - 1 ) 1 η τ , X p ( E / L ) , where E is an elliptic curve over K , η and τ are respectively the quadratic character and an irreductible representation of degree 2 of Gal ( L / K ) = D 2 p n , and X p ( E / L ) is the p -Selmer group. The main novelty is that we use a congruence result between ε 0 -factors (due to Deligne) for the determination of local root numbers in bad cases (places of additive reduction above 2 and 3). We also give applications to the p -parity conjecture...

On surfaces with p 𝑔 = q = 1 and non-ruled bicanonical involution

Carlos Rito (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

This paper classifies surfaces S of general type with p g = q = 1 having an involution i such that S / i has non-negative Kodaira dimension and that the bicanonical map of S factors through the double cover induced by i . It is shown that S / i is regular and either: a) the Albanese fibration of S is of genus 2 or b) S has no genus 2 fibration and S / i is birational to a K 3 surface. For case a) a list of possibilities and examples are given. An example for case b) with K 2 = 6 is also constructed.

On the derived length of units in group algebra

Dishari Chaudhuri, Anupam Saikia (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group G , K a field of characteristic p 17 and let U be the group of units in K G . We show that if the derived length of U does not exceed 4 , then G must be abelian.

On a generalization of the Beiter Conjecture

Bartłomiej Bzdęga (2016)

Acta Arithmetica

Similarity:

We prove that for every ε > 0 and every nonnegative integer w there exist primes p 1 , . . . , p w such that for n = p 1 . . . p w the height of the cyclotomic polynomial Φ n is at least ( 1 - ε ) c w M n , where M n = i = 1 w - 2 p i 2 w - 1 - i - 1 and c w is a constant depending only on w; furthermore l i m w c w 2 - w 0 . 71 . In our construction we can have p i > h ( p 1 . . . p i - 1 ) for all i = 1,...,w and any function h: ℝ₊ → ℝ₊.

Brill–Noether loci for divisors on irregular varieties

Margarida Mendes Lopes, Rita Pardini, Pietro Pirola (2014)

Journal of the European Mathematical Society

Similarity:

We take up the study of the Brill-Noether loci W r ( L , X ) : = { η Pic 0 ( X ) | h 0 ( L η ) r + 1 } , where X is a smooth projective variety of dimension > 1 , L Pic ( X ) , and r 0 is an integer. By studying the infinitesimal structure of these loci and the Petri map (defined in analogy with the case of curves), we obtain lower bounds for h 0 ( K D ) , where D is a divisor that moves linearly on a smooth projective variety X of maximal Albanese dimension. In this way we sharpen the results of [Xi] and we generalize them to dimension > 2 . In the 2 -dimensional case...

On the torsion of the Jacobians of the hyperelliptic curves y² = xⁿ + a and y² = x(xⁿ+a)

Tomasz Jędrzejak (2016)

Acta Arithmetica

Similarity:

Consider two families of hyperelliptic curves (over ℚ), C n , a : y ² = x + a and C n , a : y ² = x ( x + a ) , and their respective Jacobians J n , a , J n , a . We give a partial characterization of the torsion part of J n , a ( ) and J n , a ( ) . More precisely, we show that the only prime factors of the orders of such groups are 2 and prime divisors of n (we also give upper bounds for the exponents). Moreover, we give a complete description of the torsion part of J 8 , a ( ) . Namely, we show that J 8 , a ( ) t o r s = J 8 , a ( ) [ 2 ] . In addition, we characterize the torsion parts of J p , a ( ) , where p is an odd...

Purity of level m stratifications

Marc-Hubert Nicole, Adrian Vasiu, Torsten Wedhorn (2010)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let k be a field of characteristic p > 0 . Let D m be a BT m over k (i.e., an m -truncated Barsotti–Tate group over k ). Let S be a k -scheme and let X be a BT m over S . Let S D m ( X ) be the subscheme of S which describes the locus where X is locally for the fppf topology isomorphic to D m . If p 5 , we show that S D m ( X ) is pure in S , i.e. the immersion S D m ( X ) S is affine. For p { 2 , 3 } , we prove purity if D m satisfies a certain technical property depending only on its p -torsion D m [ p ] . For p 5 , we apply the developed techniques to show that...