Displaying similar documents to “Separable p -harmonic functions in a cone and related quasilinear equations on manifolds”

The inverse mean curvature flow and p -harmonic functions

Roger Moser (2007)

Journal of the European Mathematical Society

Similarity:

We consider the level set formulation of the inverse mean curvature flow. We establish a connection to the problem of p -harmonic functions and give a new proof for the existence of weak solutions.

Local gradient estimates of p -harmonic functions, 1 / H -flow, and an entropy formula

Brett Kotschwar, Lei Ni (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

In the first part of this paper, we prove local interior and boundary gradient estimates for p -harmonic functions on general Riemannian manifolds. With these estimates, following the strategy in recent work of R. Moser, we prove an existence theorem for weak solutions to the level set formulation of the 1 / H (inverse mean curvature) flow for hypersurfaces in ambient manifolds satisfying a sharp volume growth assumption. In the second part of this paper, we consider two parabolic analogues...

Generalized Hölder type spaces of harmonic functions in the unit ball and half space

Alexey Karapetyants, Joel Esteban Restrepo (2020)

Czechoslovak Mathematical Journal

Similarity:

We study spaces of Hölder type functions harmonic in the unit ball and half space with some smoothness conditions up to the boundary. The first type is the Hölder type space of harmonic functions with prescribed modulus of continuity ω = ω ( h ) and the second is the variable exponent harmonic Hölder space with the continuity modulus | h | λ ( · ) . We give a characterization of functions in these spaces in terms of the behavior of their derivatives near the boundary.

A class of functions containing polyharmonic functions in ℝⁿ

V. Anandam, M. Damlakhi (2003)

Annales Polonici Mathematici

Similarity:

Some properties of the functions of the form v ( x ) = i = 0 m | x | i h i ( x ) in ℝⁿ, n ≥ 2, where each h i is a harmonic function defined outside a compact set, are obtained using the harmonic measures.

On separately subharmonic functions (Lelong’s problem)

A. Sadullaev (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The main result of the present paper is : every separately-subharmonic function u ( x , y ) , which is harmonic in y , can be represented locally as a sum two functions, u = u * + U , where U is subharmonic and u * is harmonic in y , subharmonic in x and harmonic in ( x , y ) outside of some nowhere dense set S .

Landau's theorem for p-harmonic mappings in several variables

Sh. Chen, S. Ponnusamy, X. Wang (2012)

Annales Polonici Mathematici

Similarity:

A 2p-times continuously differentiable complex-valued function f = u + iv in a domain D ⊆ ℂ is p-harmonic if f satisfies the p-harmonic equation Δ p f = 0 , where p (≥ 1) is a positive integer and Δ represents the complex Laplacian operator. If Ω ⊂ ℂⁿ is a domain, then a function f : Ω m is said to be p-harmonic in Ω if each component function f i (i∈ 1,...,m) of f = ( f , . . . , f m ) is p-harmonic with respect to each variable separately. In this paper, we prove Landau and Bloch’s theorem for a class of p-harmonic mappings...

Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents

Fanghua Lin, Tristan Rivière (1999)

Journal of the European Mathematical Society

Similarity:

There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S 1 -valued function defined on the boundary of a bounded regular domain of R n . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within...

Uniform bounds for quotients of Green functions on C 1 , 1 -domains

H. Hueber, M. Sieveking (1982)

Annales de l'institut Fourier

Similarity:

Let Δ u = Σ i 2 x i 2 , L u = Σ i , j a i j 2 x i x j u + Σ i b i x i u + c u be elliptic operators with Hölder continuous coefficients on a bounded domain Ω R n of class C 1 , 1 . There is a constant c > 0 depending only on the Hölder norms of the coefficients of L and its constant of ellipticity such that c - 1 G Δ Ω G L Ω c G Δ Ω on Ω × Ω , where γ Δ Ω (resp. G L Ω ) are the Green functions of Δ (resp. L ) on Ω .

Harmonie reflections

Lieven Vanhecke, Maria-Elena Vazquez-Abal (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

We study local reflections ϕ σ with respect to a curve σ in a Riemannian manifold and prove that σ is a geodesic if ϕ σ is a harmonic map. Moreover, we prove that the Riemannian manifold has constant curvature if and only if ϕ σ is harmonic for all geodesies σ .

Hörmander systems and harmonic morphisms

Elisabetta Barletta (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Given a Hörmander system X = { X 1 , , X m } on a domain Ω 𝐑 n we show that any subelliptic harmonic morphism φ from Ω into a ν -dimensional riemannian manifold N is a (smooth) subelliptic harmonic map (in the sense of J. Jost & C-J. Xu, [9]). Also φ is a submersion provided that ν m and X has rank m . If Ω = 𝐇 n (the Heisenberg group) and X = 1 2 L α + L α ¯ , 1 2 i L α - L α ¯ , where L α ¯ = / z ¯ α - i z α / t is the Lewy operator, then a smooth map φ : Ω N is a subelliptic harmonic morphism if and only if φ π : ( C ( 𝐇 n ) , F θ 0 ) N is a harmonic morphism, where S 1 C ( 𝐇 n ) π 𝐇 n is the canonical circle bundle and F θ 0 ...

On Uniqueness Theoremsfor Ricci Tensor

Marina B. Khripunova, Sergey E. Stepanov, Irina I. Tsyganok, Josef Mikeš (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold M and a symmetric 2-tensor r , construct a metric on M whose Ricci tensor equals r . In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with...

Duality on vector-valued weighted harmonic Bergman spaces

Salvador Pérez-Esteva (1996)

Studia Mathematica

Similarity:

We study the duals of the spaces A p α ( X ) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner L p space with weight ( 1 - | x | ) α , denoted by L p α ( X ) . For 0 < α < p-1 we construct continuous projections onto A p α ( X ) providing a decomposition L p α ( X ) = A p α ( X ) + M p α ( X ) . We discuss the conditions on p, α and X for which A p α ( X ) * = A q α ( X * ) and M p α ( X ) * = M q α ( X * ) , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

A new characterization of the sphere in R 3

Thomas Hasanis (1980)

Annales Polonici Mathematici

Similarity:

Let M be a closed connected surface in R 3 with positive Gaussian curvature K and let K I I be the curvature of its second fundamental form. It is shown that M is a sphere if K I I = c H K r , for some constants c and r, where H is the mean curvature of M.