Displaying similar documents to “Canonical contact forms on spherical CR manifolds”

The CR Yamabe conjecture the case n = 1

Najoua Gamara (2001)

Journal of the European Mathematical Society

Similarity:

Let ( M , θ ) be a compact CR manifold of dimension 2 n + 1 with a contact form θ , and L = ( 2 + 2 / n ) Δ b + R its associated CR conformal laplacien. The CR Yamabe conjecture states that there is a contact form θ ˜ on M conformal to θ which has a constant Webster curvature. This problem is equivalent to the existence of a function u such that L u = u 1 + 2 / n , u > 0 on M . D. Jerison and J. M. Lee solved the CR Yamabe problem in the case where n 2 and ( M , θ ) is not locally CR equivalent to the sphere S 2 n + 1 of 𝐂 n . In a join work with R. Yacoub, the CR Yamabe...

Perron-Frobenius operators and the Klein-Gordon equation

Francisco Canto-Martín, Håkan Hedenmalm, Alfonso Montes-Rodríguez (2014)

Journal of the European Mathematical Society

Similarity:

For a smooth curve Γ and a set Λ in the plane 2 , let A C ( Γ ; Λ ) be the space of finite Borel measures in the plane supported on Γ , absolutely continuous with respect to the arc length and whose Fourier transform vanishes on Λ . Following [12], we say that ( Γ , Λ ) is a Heisenberg uniqueness pair if A C ( Γ ; Λ ) = { 0 } . In the context of a hyperbola Γ , the study of Heisenberg uniqueness pairs is the same as looking for uniqueness sets Λ of a collection of solutions to the Klein-Gordon equation. In this work, we mainly...

Some type of semisymmetry on two classes of almost Kenmotsu manifolds

Dibakar Dey, Pradip Majhi (2021)

Communications in Mathematics

Similarity:

The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a ( k , μ ) -almost Kenmotsu manifold satisfying the curvature condition Q · R = 0 is locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) . Also in ( k , μ ) -almost Kenmotsu manifolds the following conditions: (1) local symmetry ( R = 0 ) , (2) semisymmetry ( R · R = 0 ) , (3) Q ( S , R ) = 0 , (4) R · R = Q ( S , R ) , (5) locally isometric to the hyperbolic space 2 n + 1 ( - 1 ) are equivalent. Further, it is proved that a ( k , μ ) ' -almost Kenmotsu manifold...

On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

See Summary in Note I. First, on the basis of some results in [2] or [5]-such as Lemmas 8.1 and 10.1-the general (mathematical) theorems on controllizability proved in Note I are quickly applied to (mechanic) Lagrangian systems. Second, in case Σ , χ and M satisfy conditions (11.7) when 𝒬 is a polynomial in γ ˙ , conditions (C)-i.e. (11.8) and (11.7) with 𝒬 0 -are proved to be necessary for treating satisfactorily Σ 's hyper-impulsive motions (in which positions can suffer first order discontinuities)....

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n > 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .

The vertical prolongation of the projectable connections

Anna Bednarska (2012)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We prove that any first order 2 m 1 , m 2 , n 1 , n 2 -natural operator transforming projectable general connections on an ( m 1 , m 2 , n 1 , n 2 ) -dimensional fibred-fibred manifold p = ( p , p ) : ( p Y : Y Y ) ( p M : M M ) into general connections on the vertical prolongation V Y M of p : Y M is the restriction of the (rather well-known) vertical prolongation operator 𝒱 lifting general connections Γ ¯ on a fibred manifold Y M into 𝒱 Γ ¯ (the vertical prolongation of Γ ¯ ) on V Y M .

Recent results on stationary critical Kirchhoff systems in closed manifolds

Emmanuel Hebey, Pierre-Damien Thizy (2013-2014)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

We report on results we recently obtained in Hebey and Thizy [11, 12] for critical stationary Kirchhoff systems in closed manifolds. Let ( M n , g ) be a closed n -manifold, n 3 . The critical Kirchhoff systems we consider are written as a + b j = 1 p M | u j | 2 d v g Δ g u i + j = 1 p A i j u j = U 2 - 2 u i for all i = 1 , , p , where Δ g is the Laplace-Beltrami operator, A is a C 1 -map from M into the space M s p ( ) of symmetric p × p matrices with real entries, the A i j ’s are the components of A , U = ( u 1 , , u p ) , | U | : M is the Euclidean norm of U , 2 = 2 n n - 2 is the critical Sobolev exponent, and...

A universal bound for lower Neumann eigenvalues of the Laplacian

Wei Lu, Jing Mao, Chuanxi Wu (2020)

Czechoslovak Mathematical Journal

Similarity:

Let M be an n -dimensional ( n 2 ) simply connected Hadamard manifold. If the radial Ricci curvature of M is bounded from below by ( n - 1 ) k ( t ) with respect to some point p M , where t = d ( · , p ) is the Riemannian distance on M to p , k ( t ) is a nonpositive continuous function on ( 0 , ) , then the first n nonzero Neumann eigenvalues of the Laplacian on the geodesic ball B ( p , l ) , with center p and radius 0 < l < , satisfy 1 μ 1 + 1 μ 2 + + 1 μ n l n + 2 ( n + 2 ) 0 l f n - 1 ( t ) d t , where f ( t ) is the solution to f ' ' ( t ) + k ( t ) f ( t ) = 0 on ( 0 , ) , f ( 0 ) = 0 , f ' ( 0 ) = 1 .

Finiteness problems on Nash manifolds and Nash sets

José F. Fernando, José Manuel Gamboa, Jesús M. Ruiz (2014)

Journal of the European Mathematical Society

Similarity:

We study here several finiteness problems concerning affine Nash manifolds M and Nash subsets X . Three main results are: (i) A Nash function on a semialgebraic subset Z of M has a Nash extension to an open semialgebraic neighborhood of Z in M , (ii) A Nash set X that has only normal crossings in M can be covered by finitely many open semialgebraic sets U equipped with Nash diffeomorphisms ( u 1 , , u m ) : U m such that U X = { u 1 u r = 0 } , (iii) Every affine Nash manifold with corners N is a closed subset of an affine Nash...

On the Picard number of divisors in Fano manifolds

Cinzia Casagrande (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let  X be a complex Fano manifold of arbitrary dimension, and D a prime divisor in  X . We consider the image 𝒩 1 ( D , X ) of  𝒩 1 ( D ) in  𝒩 1 ( X ) under the natural push-forward of 1 -cycles. We show that ρ X - ρ D codim 𝒩 1 ( D , X ) 8 . Moreover if codim 𝒩 1 ( D , X ) 3 , then either X S × T where S is a Del Pezzo surface, or codim 𝒩 1 ( D , X ) = 3 and X has a fibration in Del Pezzo surfaces onto a Fano manifold T such that ρ X - ρ T = 4 .

On Kakeya–Nikodym averages, L p -norms and lower bounds for nodal sets of eigenfunctions in higher dimensions

Matthew D. Blair, Christopher D. Sogge (2015)

Journal of the European Mathematical Society

Similarity:

We extend a result of the second author [27, Theorem 1.1] to dimensions d 3 which relates the size of L p -norms of eigenfunctions for 2 < p < 2 ( d + 1 ) / d - 1 to the amount of L 2 -mass in shrinking tubes about unit-length geodesics. The proof uses bilinear oscillatory integral estimates of Lee [22] and a variable coefficient variant of an " ϵ removal lemma" of Tao and Vargas [35]. We also use Hörmander’s [20] L 2 oscillatory integral theorem and the Cartan–Hadamard theorem to show that, under the assumption of nonpositive...

Automorphisms of metacyclic groups

Haimiao Chen, Yueshan Xiong, Zhongjian Zhu (2018)

Czechoslovak Mathematical Journal

Similarity:

A metacyclic group H can be presented as α , β : α n = 1 , β m = α t , β α β - 1 = α r for some n , m , t , r . Each endomorphism σ of H is determined by σ ( α ) = α x 1 β y 1 , σ ( β ) = α x 2 β y 2 for some integers x 1 , x 2 , y 1 , y 2 . We give sufficient and necessary conditions on x 1 , x 2 , y 1 , y 2 for σ to be an automorphism.

On lifts of projectable-projectable classical linear connections to the cotangent bundle

Anna Bednarska (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

We describe all 2 m 1 , m 2 , n 1 , n 2 -natural operators D : Q p r o j - p r o j τ Q T * transforming projectable-projectable classical torsion-free linear connections on fibred-fibred manifolds Y into classical linear connections D ( ) on cotangent bundles T * Y of Y . We show that this problem can be reduced to finding 2 m 1 , m 2 , n 1 , n 2 -natural operators D : Q p r o j - p r o j τ ( T * , p T * q T ) for p = 2 , q = 1 and p = 3 , q = 0 .

Pointed k -surfaces

Graham Smith (2006)

Bulletin de la Société Mathématique de France

Similarity:

Let S be a Riemann surface. Let 3 be the 3 -dimensional hyperbolic space and let 3 be its ideal boundary. In our context, a Plateau problem is a locally holomorphic mapping ϕ : S 3 = ^ . If i : S 3 is a convex immersion, and if N is its exterior normal vector field, we define the Gauss lifting, ı ^ , of i by ı ^ = N . Let n : U 3 3 be the Gauss-Minkowski mapping. A solution to the Plateau problem ( S , ϕ ) is a convex immersion i of constant Gaussian curvature equal to k ( 0 , 1 ) such that the Gauss lifting ( S , ı ^ ) is complete and n ı ^ = ϕ . In this...

On almost complex structures from classical linear connections

Jan Kurek, Włodzimierz M. Mikulski (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let f m be the category of m -dimensional manifolds and local diffeomorphisms and  let T be the tangent functor on f m . Let 𝒱 be the category of real vector spaces and linear maps and let 𝒱 m be the category of m -dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F : 𝒱 m 𝒱 admitting f m -natural operators J ˜ transforming classical linear connections on m -dimensional manifolds M into almost complex structures J ˜ ( ) on F ( T ) M = x M F ( T x M ) .

η -Ricci Solitons on η -Einstein ( L C S ) n -Manifolds

Shyamal Kumar Hui, Debabrata Chakraborty (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The object of the present paper is to study η -Ricci solitons on η -Einstein ( L C S ) n -manifolds. It is shown that if ξ is a recurrent torse forming η -Ricci soliton on an η -Einstein ( L C S ) n -manifold then ξ is (i) concurrent and (ii) Killing vector field.

The almost Einstein operator for ( 2 , 3 , 5 ) distributions

Katja Sagerschnig, Travis Willse (2017)

Archivum Mathematicum

Similarity:

For the geometry of oriented ( 2 , 3 , 5 ) distributions ( M , ) , which correspond to regular, normal parabolic geometries of type ( G 2 , P ) for a particular parabolic subgroup P < G 2 , we develop the corresponding tractor calculus and use it to analyze the first BGG operator Θ 0 associated to the 7 -dimensional irreducible representation of G 2 . We give an explicit formula for the normal connection on the corresponding tractor bundle and use it to derive explicit expressions for this operator. We also show that solutions...