The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Existence of solutions to the nonstationary Stokes system in H - μ 2 , 1 , μ ∈ (0,1), in a domain with a distinguished axis. Part 2. Estimate in the 3d case”

Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production

Lu Yang, Xi Liu, Zhibo Hou (2023)

Czechoslovak Mathematical Journal

Similarity:

We consider the Keller-Segel-Navier-Stokes system n t + 𝐮 · n = Δ n - · ( n v ) , x Ω , t > 0 , v t + 𝐮 · v = Δ v - v + w , x Ω , t > 0 , w t + 𝐮 · w = Δ w - w + n , x Ω , t > 0 , 𝐮 t + ( 𝐮 · ) 𝐮 = Δ 𝐮 + P + n φ , · 𝐮 = 0 , x Ω , t > 0 , which is considered in bounded domain Ω N ( N { 2 , 3 } ) with smooth boundary, where φ C 1 + δ ( Ω ¯ ) with δ ( 0 , 1 ) . We show that if the initial data n 0 L N / 2 ( Ω ) , v 0 L N ( Ω ) , w 0 L N ( Ω ) and 𝐮 0 L N ( Ω ) is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state ( n ¯ 0 , n ¯ 0 , n ¯ 0 , 0 ) exponentially with n ¯ 0 : = ( 1 / | Ω | ) Ω n 0 ( x ) d x .

Profile decomposition for solutions of the Navier-Stokes equations

Isabelle Gallagher (2001)

Bulletin de la Société Mathématique de France

Similarity:

We consider sequences of solutions of the Navier-Stokes equations in  3 , associated with sequences of initial data bounded in  H ˙ 1 / 2 . We prove, in the spirit of the work of H.Bahouri and P.Gérard (in the case of the wave equation), that they can be decomposed into a sum of orthogonal profiles, bounded in  H ˙ 1 / 2 , up to a remainder term small in  L 3 ; the method is based on the proof of a similar result for the heat equation, followed by a perturbation–type argument. If  𝒜 is an “admissible” space (in...

On the existence of steady-state solutions to the Navier-Stokes system for large fluxes

Antonio Russo, Giulio Starita (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we deal with the stationary Navier-Stokes problem in a domain Ω with compact Lipschitz boundary Ω and datum a in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of Ω , with possible countable exceptional set, provided a is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for Ω bounded.

The maximum regularity property of the steady Stokes problem associated with a flow through a profile cascade in L r -framework

Tomáš Neustupa (2023)

Applications of Mathematics

Similarity:

We deal with the steady Stokes problem, associated with a flow of a viscous incompressible fluid through a spatially periodic profile cascade. Using the reduction to domain Ω , which represents one spatial period, the problem is formulated by means of boundary conditions of three types: the conditions of periodicity on curves Γ - and Γ + (lower and upper parts of Ω ), the Dirichlet boundary conditions on Γ in (the inflow) and Γ 0 (boundary of the profile) and an artificial “do nothing”-type boundary...

A blow-up criterion for the strong solutions to the nonhomogeneous Navier-Stokes-Korteweg equations in dimension three

Huanyuan Li (2021)

Applications of Mathematics

Similarity:

This paper proves a Serrin’s type blow-up criterion for the 3D density-dependent Navier-Stokes-Korteweg equations with vacuum. It is shown that if the density ρ and velocity field u satisfy ρ L ( 0 , T ; W 1 , q ) + u L s ( 0 , T ; L ω r ) < for some q > 3 and any ( r , s ) satisfying 2 / s + 3 / r 1 , 3 < r , then the strong solutions to the density-dependent Navier-Stokes-Korteweg equations can exist globally over [ 0 , T ] . Here L ω r denotes the weak L r space.

A short note on L q theory for Stokes problem with a pressure-dependent viscosity

Václav Mácha (2016)

Czechoslovak Mathematical Journal

Similarity:

We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on p and on the symmetric part of a gradient of u , namely, it is represented by a stress tensor T ( D u , p ) : = ν ( p , | D | 2 ) D which satisfies r -growth condition with r ( 1 , 2 ] . In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for...

An improved regularity criteria for the MHD system based on two components of the solution

Zujin Zhang, Yali Zhang (2021)

Applications of Mathematics

Similarity:

As observed by Yamazaki, the third component b 3 of the magnetic field can be estimated by the corresponding component u 3 of the velocity field in L λ ( 2 λ 6 ) norm. This leads him to establish regularity criterion involving u 3 , j 3 or u 3 , ω 3 . Noticing that λ can be greater than 6 in this paper, we can improve previous results.

On the existence of solutions for the nonstationary Stokes system with slip boundary conditions in general Sobolev-Slobodetskii and Besov spaces

Wisam Alame (2005)

Banach Center Publications

Similarity:

We prove the existence of solutions to the evolutionary Stokes system in a bounded domain Ω ⊂ ℝ³. The main result shows that the velocity belongs either to W p 2 s + 2 , s + 1 ( Ω T ) or to B p , q 2 s + 2 , s + 1 ( Ω T ) with p > 3 and s ∈ ℝ₊ ∪ 0. The proof is divided into two steps. First the existence in W p 2 k + 2 , k + 1 for k ∈ ℕ is proved. Next applying interpolation theory the existence in Besov spaces in a half space is shown. Finally the technique of regularizers implies the existence in a bounded domain. The result is generalized to the spaces...

Local-in-time existence for the non-resistive incompressible magneto-micropolar fluids

Peixin Zhang, Mingxuan Zhu (2022)

Applications of Mathematics

Similarity:

We establish the local-in-time existence of a solution to the non-resistive magneto-micropolar fluids with the initial data u 0 H s - 1 + ε , w 0 H s - 1 and b 0 H s for s > 3 2 and any 0 < ε < 1 . The initial regularity of the micro-rotational velocity w is weaker than velocity of the fluid u .

Some weighted norm inequalities for a one-sided version of g * λ

L. de Rosa, C. Segovia (2006)

Studia Mathematica

Similarity:

We study the boundedness of the one-sided operator g λ , φ between the weighted spaces L p ( M ¯ w ) and L p ( w ) for every weight w. If λ = 2/p whenever 1 < p < 2, and in the case p = 1 for λ > 2, we prove the weak type of g λ , φ . For every λ > 1 and p = 2, or λ > 2/p and 1 < p < 2, the boundedness of this operator is obtained. For p > 2 and λ > 1, we obtain the boundedness of g λ , φ from L p ( ( M ¯ ) [ p / 2 ] + 1 w ) to L p ( w ) , where ( M ¯ ) k denotes the operator M¯ iterated k times.

Controlling products of currents by higher powers of plurisubharmonic functions

Ahmad K. Al Abdulaali, Hassine El Mir (2020)

Czechoslovak Mathematical Journal

Similarity:

We discuss the existence of the current g k T , k for positive and closed currents T and unbounded plurisubharmonic functions g . Furthermore, a new type of weighted Lelong number is introduced under the name of weight k Lelong number.

A note on average behaviour of the Fourier coefficients of j th symmetric power L -function over certain sparse sequence of positive integers

Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let j 2 be a given integer. Let H k * be the set of all normalized primitive holomorphic cusp forms of even integral weight k 2 for the full modulo group SL ( 2 , ) . For f H k * , denote by λ sym j f ( n ) the n th normalized Fourier coefficient of j th symmetric power L -function ( L ( s , sym j f ) ) attached to f . We are interested in the average behaviour of the sum n = a 1 2 + a 2 2 + a 3 2 + a 4 2 + a 5 2 + a 6 2 x ( a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ) 6 λ sym j f 2 ( n ) , where x is sufficiently large, which improves the recent work of A. Sharma and A. Sankaranarayanan (2023).

The L 2 ¯ -Cauchy problem on weakly q -pseudoconvex domains in Stein manifolds

Sayed Saber (2015)

Czechoslovak Mathematical Journal

Similarity:

Let X be a Stein manifold of complex dimension n 2 and Ω X be a relatively compact domain with C 2 smooth boundary in X . Assume that Ω is a weakly q -pseudoconvex domain in X . The purpose of this paper is to establish sufficient conditions for the closed range of ¯ on Ω . Moreover, we study the ¯ -problem on Ω . Specifically, we use the modified weight function method to study the weighted ¯ -problem with exact support in Ω . Our method relies on the L 2 -estimates by Hörmander (1965) and by Kohn (1973). ...

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Fourier approximation and embeddings of Sobolev spaces

D. E. Edmunds, V. B. Moscatelli

Similarity:

CONTENTSIntroduction............................................................................................................ 51. Preliminaries............................................................................................................. 82. Embedding into W m , p ( Ω ) into L S ( Ω ) (n>1).......................................... 103. The case n = 1.......................................................................................................... 284. Embedding W m , p ( Ω ) into L φ ( Ω ) ...............................................................