Displaying similar documents to “A note on the regularity of the degenerate complex Monge-Ampère equation”

On a Monge-Ampère type equation in the Cegrell class χ

Rafał Czyż (2010)

Annales Polonici Mathematici

Similarity:

Let Ω be a bounded hyperconvex domain in ℂn and let μ be a positive and finite measure which vanishes on all pluripolar subsets of Ω. We prove that for every continuous and strictly increasing function χ:(-∞,0) → (-∞,0) there exists a negative plurisubharmonic function u which solves the Monge-Ampère type equation - χ ( u ) ( d d c u ) = d μ . Under some additional assumption the solution u is uniquely determined.

Hölder regularity for solutions to complex Monge-Ampère equations

Mohamad Charabati (2015)

Annales Polonici Mathematici

Similarity:

We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is 1 , 1 and the right hand side has a density in L p ( Ω ) for some p > 1, and prove the Hölder continuity of the solution.

A class of maximal plurisubharmonic functions

Azimbay Sadullaev (2012)

Annales Polonici Mathematici

Similarity:

We consider a class of maximal plurisubharmonic functions and prove several properties of it. We also give a condition of maximality for unbounded plurisubharmonic functions in terms of the Monge-Ampère operator ( d d c e u ) .

Fundamental solutions of the complex Monge-Ampère equation

Halil Ibrahim Celik, Evgeny A. Poletsky (1997)

Annales Polonici Mathematici

Similarity:

We prove that any positive function on ℂℙ¹ which is constant outside a countable G δ -set is the order function of a fundamental solution of the complex Monge-Ampère equation on the unit ball in ℂ² with a singularity at the origin.

On the Dirichlet problem in the Cegrell classes

Rafał Czyż, Per Åhag (2004)

Annales Polonici Mathematici

Similarity:

Let μ be a non-negative measure with finite mass given by φ ( d d c ψ ) , where ψ is a bounded plurisubharmonic function with zero boundary values and φ L q ( ( d d c ψ ) ) , φ ≥ 0, 1 ≤ q ≤ ∞. The Dirichlet problem for the complex Monge-Ampère operator with the measure μ is studied.

The Monge problem for strictly convex norms in d

Thierry Champion, Luigi De Pascale (2010)

Journal of the European Mathematical Society

Similarity:

We prove the existence of an optimal transport map for the Monge problem in a convex bounded subset of d under the assumptions that the first marginal is absolutely continuous with respect to the Lebesgue measure and that the cost is given by a strictly convex norm. We propose a new approach which does not use disintegration of measures.

Pseudo-Riemannian and Hessian geometry related to Monge-Ampère structures

S. Hronek, R. Suchánek (2022)

Archivum Mathematicum

Similarity:

We study properties of pseudo-Riemannian metrics corresponding to Monge-Ampère structures on four dimensional T * M . We describe a family of Ricci flat solutions, which are parametrized by six coefficients satisfying the Plücker embedding equation. We also focus on pullbacks of the pseudo-metrics on two dimensional M , and describe the corresponding Hessian structures.

A Monge-Ampère equation in conformal geometry

Matthew J. Gursky (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider the Monge-Ampère-type equation det ( A + λ g ) = const . , where A is the Schouten tensor of a conformally related metric and λ > 0 is a suitably chosen constant. When the scalar curvature is non-positive we give necessary and sufficient conditions for the existence of solutions. When the scalar curvature is positive and the first Betti number of the manifold is non-zero we also establish existence. Moreover, by adapting a construction of Schoen, we show that solutions are in general not unique. ...

A priori estimates for weak solutions of complex Monge-Ampère equations

Slimane Benelkourchi, Vincent Guedj, Ahmed Zeriahi (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

Let X be a compact Kähler manifold and ω be a smooth closed form of bidegree ( 1 , 1 ) which is nonnegative and big. We study the classes χ ( X , ω ) of ω -plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight χ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class χ ( X , ω ) . This is done by...

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Pham Hoang Hiep, Sławomir Kołodziej, Ahmed Zeriahi (2014)

Journal of the European Mathematical Society

Similarity:

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that...

Subextension of plurisubharmonic functions without changing the Monge-Ampère measures and applications

Le Mau Hai, Nguyen Xuan Hong (2014)

Annales Polonici Mathematici

Similarity:

The aim of the paper is to investigate subextensions with boundary values of certain plurisubharmonic functions without changing the Monge-Ampère measures. From the results obtained, we deduce that if a given sequence is convergent in C n - 1 -capacity then the sequence of the Monge-Ampère measures of subextensions is weakly*-convergent. As an application, we investigate the Dirichlet problem for a nonnegative measure μ in the class ℱ(Ω,g) without the assumption that μ vanishes on all pluripolar...

Concerning the energy class p for 0 < p < 1

Per Åhag, Rafał Czyż, Pham Hoàng Hiêp (2007)

Annales Polonici Mathematici

Similarity:

The energy class p is studied for 0 < p < 1. A characterization of certain bounded plurisubharmonic functions in terms of p and its pluricomplex p-energy is proved.

Potentials with respect to the pluricomplex Green function

Urban Cegrell (2012)

Annales Polonici Mathematici

Similarity:

For μ a positive measure, we estimate the pluricomplex potential of μ, P μ ( x ) = Ω g ( x , y ) d μ ( y ) , where g(x,y) is the pluricomplex Green function (relative to Ω) with pole at y.

The gradient lemma

Urban Cegrell (2007)

Annales Polonici Mathematici

Similarity:

We show that if a decreasing sequence of subharmonic functions converges to a function in W l o c 1 , 2 then the convergence is in W l o c 1 , 2 .

On subextension and approximation of plurisubharmonic functions with given boundary values

Hichame Amal (2014)

Annales Polonici Mathematici

Similarity:

Our aim in this article is the study of subextension and approximation of plurisubharmonic functions in χ ( Ω , H ) , the class of functions with finite χ-energy and given boundary values. We show that, under certain conditions, one can approximate any function in χ ( Ω , H ) by an increasing sequence of plurisubharmonic functions defined on strictly larger domains.

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

Similarity:

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity,...

C 1 , α regularity for elliptic equations with the general nonstandard growth conditions

Sungchol Kim, Dukman Ri (2024)

Mathematica Bohemica

Similarity:

We study elliptic equations with the general nonstandard growth conditions involving Lebesgue measurable functions on Ω . We prove the global C 1 , α regularity of bounded weak solutions of these equations with the Dirichlet boundary condition. Our results generalize the C 1 , α regularity results for the elliptic equations in divergence form not only in the variable exponent case but also in the constant exponent case.

Kähler-Einstein metrics with mixed Poincaré and cone singularities along a normal crossing divisor

Henri Guenancia (2014)

Annales de l’institut Fourier

Similarity:

Let X be a compact Kähler manifold and Δ be a -divisor with simple normal crossing support and coefficients between 1 / 2 and 1 . Assuming that K X + Δ is ample, we prove the existence and uniqueness of a negatively curved Kahler-Einstein metric on X Supp ( Δ ) having mixed Poincaré and cone singularities according to the coefficients of Δ . As an application we prove a vanishing theorem for certain holomorphic tensor fields attached to the pair ( X , Δ ) .

Convergence in capacity

Pham Hoang Hiep (2008)

Annales Polonici Mathematici

Similarity:

We prove that if ( Ω ) u j u ( Ω ) in Cₙ-capacity then l i m i n f j ( d d c u j ) n 1 u > - ( d d c u ) n . This result is used to consider the convergence in capacity on bounded hyperconvex domains and compact Kähler manifolds.

Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems

Christoph Hamburger (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system div A ( x , u , D u ) + B ( x , u , D U ) = 0 , under natural polynomial growth of the coefficient functions A and B . We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.

Monge-Ampère measures and Poletsky-Stessin Hardy spaces on bounded hyperconvex domains

Sibel Şahin (2015)

Banach Center Publications

Similarity:

Poletsky-Stessin Hardy (PS-Hardy) spaces are the natural generalizations of classical Hardy spaces of the unit disc to general bounded, hyperconvex domains. On a bounded hyperconvex domain Ω, the PS-Hardy space H u p ( Ω ) is generated by a continuous, negative, plurisubharmonic exhaustion function u of the domain. Poletsky and Stessin considered the general properties of these spaces and mainly concentrated on the spaces H u p ( Ω ) where the Monge-Ampère measure ( d d c u ) has compact support for the associated...

Green functions, Segre numbers, and King’s formula

Mats Andersson, Elizabeth Wulcan (2014)

Annales de l’institut Fourier

Similarity:

Let 𝒥 be a coherent ideal sheaf on a complex manifold X with zero set Z , and let G be a plurisubharmonic function such that G = log | f | + 𝒪 ( 1 ) locally at Z , where f is a tuple of holomorphic functions that defines 𝒥 . We give a meaning to the Monge-Ampère products ( d d c G ) k for k = 0 , 1 , 2 , ... , and prove that the Lelong numbers of the currents M k 𝒥 : = 1 Z ( d d c G ) k at x coincide with the so-called Segre numbers of J at x , introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that M k 𝒥 satisfy a certain...

Representation of equilibrium solutions to the table problem of growing sandpiles

Piermarco Cannarsa, Pierre Cardaliaguet (2004)

Journal of the European Mathematical Society

Similarity:

In the dynamical theory of granular matter the so-called table problem consists in studying the evolution of a heap of matter poured continuously onto a bounded domain Ω 2 . The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge–Kantorovich problem, is the object of this paper....