Displaying similar documents to “Positive solutions for one-dimensional singular p-Laplacian boundary value problems”

Existence Theorems for a Fourth Order Boundary Value Problem

A. El-Haffaf (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

This paper treats the question of the existence of solutions of a fourth order boundary value problem having the following form: x ( 4 ) ( t ) + f ( t , x ( t ) , x ' ' ( t ) ) = 0 , 0 < t < 1, x(0) = x’(0) = 0, x”(1) = 0, x ( 3 ) ( 1 ) = 0 . Boundary value problems of very similar type are also considered. It is assumed that f is a function from the space C([0,1]×ℝ²,ℝ). The main tool used in the proof is the Leray-Schauder nonlinear alternative.

On the solvability of a fourth-order multi-point boundary value problem

Yuqiang Feng, Xincheng Ding (2012)

Annales Polonici Mathematici

Similarity:

We are concerned with the solvability of the fourth-order four-point boundary value problem ⎧ u ( 4 ) ( t ) = f ( t , u ( t ) , u ' ' ( t ) ) , t ∈ [0,1], ⎨ u(0) = u(1) = 0, ⎩ au”(ζ₁) - bu”’(ζ₁) = 0, cu”(ζ₂) + du”’(ζ₂) = 0, where 0 ≤ ζ₁ < ζ₂ ≤ 1, f ∈ C([0,1] × [0,∞) × (-∞,0],[0,∞)). By using Guo-Krasnosel’skiĭ’s fixed point theorem on cones, some criteria are established to ensure the existence, nonexistence and multiplicity of positive solutions for this problem.

Positive solutions for a system of third-order differential equation with multi-point and integral conditions

Rochdi Jebari, Abderrahman Boukricha (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

This paper concerns the following system of nonlinear third-order boundary value problem: u i ' ' ' ( t ) + f i ( t , u 1 ( t ) , , u n ( t ) , u 1 ' ( t ) , , u n ' ( t ) ) = 0 , 0 < t < 1 , i { 1 , , n } with the following multi-point and integral boundary conditions: u i ( 0 ) = 0 u i ' ( 0 ) = 0 u i ' ( 1 ) = j = 1 p β j , i u i ' ( η j , i ) + 0 1 h i ( u 1 ( s ) , , u n ( s ) ) d s where β j , i > 0 , 0 < η 1 , i < < η p , i < 1 2 , f i : [ 0 , 1 ] × n × n and h i : [ 0 , 1 ] × n are continuous functions for all i { 1 , , n } and j { 1 , , p } . Using Guo-Krasnosel’skii fixed point theorem in cone, we discuss the existence of positive solutions of this problem. We also prove nonexistence of positive solutions and we give some examples to illustrate our results.

Positive solutions of a fourth-order differential equation with integral boundary conditions

Seshadev Padhi, John R. Graef (2023)

Mathematica Bohemica

Similarity:

We study the existence of positive solutions to the fourth-order two-point boundary value problem u ' ' ' ' ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ' ( 0 ) = u ' ( 1 ) = u ' ' ( 0 ) = 0 , u ( 0 ) = α [ u ] , where α [ u ] = 0 1 u ( t ) d A ( t ) is a Riemann-Stieltjes integral with A 0 being a nondecreasing function of bounded variation and f 𝒞 ( [ 0 , 1 ] × + , + ) . The sufficient conditions obtained are new and easy to apply. Their approach is based on Krasnoselskii’s fixed point theorem and the Avery-Peterson fixed point theorem.

Existence of solutions for a coupled system with φ -Laplacian operators and nonlinear coupled boundary conditions

Konan Charles Etienne Goli, Assohoun Adjé (2017)

Communications in Mathematics

Similarity:

We study the existence of solutions of the system ( φ 1 ( u 1 ' ( t ) ) ) ' = f 1 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , ( φ 2 ( u 2 ' ( t ) ) ) ' = f 2 ( t , u 1 ( t ) , u 2 ( t ) , u 1 ' ( t ) , u 2 ' ( t ) ) , a.e. t [ 0 , T ] , submitted to nonlinear coupled boundary conditions on [ 0 , T ] where φ 1 , φ 2 : ( - a , a ) , with 0 < a < + , are two increasing homeomorphisms such that φ 1 ( 0 ) = φ 2 ( 0 ) = 0 , and f i : [ 0 , T ] × 4 , i { 1 , 2 } are two L 1 -Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.

Region of variability for spiral-like functions with respect to a boundary point

S. Ponnusamy, A. Vasudevarao, M. Vuorinen (2009)

Colloquium Mathematicae

Similarity:

For μ ∈ ℂ such that Re μ > 0 let μ denote the class of all non-vanishing analytic functions f in the unit disk with f(0) = 1 and R e ( 2 π / μ z f ' ( z ) / f ( z ) + ( 1 + z ) / ( 1 - z ) ) > 0 in . For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ ̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class μ ( λ ) = f μ : f ' ( 0 ) = ( μ / π ) ( λ - 1 ) a n d f ' ' ( 0 ) = ( μ / π ) ( a ( 1 - | λ | ² ) + ( μ / π ) ( λ - 1 ) ² - ( 1 - λ ² ) ) . In the final section we graphically illustrate the region of variability for several sets of parameters.

Boundedness criteria for a class of second order nonlinear differential equations with delay

Daniel O. Adams, Mathew Omonigho Omeike, Idowu A. Osinuga, Biodun S. Badmus (2023)

Mathematica Bohemica

Similarity:

We consider certain class of second order nonlinear nonautonomous delay differential equations of the form a ( t ) x ' ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) and ( a ( t ) x ' ) ' + b ( t ) g ( x , x ' ) + c ( t ) h ( x ( t - r ) ) m ( x ' ) = p ( t , x , x ' ) , where a , b , c , g , h , m and p are real valued functions which depend at most on the arguments displayed explicitly and r is a positive constant. Different forms of the integral inequality method were used to investigate the boundedness of all solutions and their derivatives. Here, we do not require construction of the Lyapunov-Krasovski functional to establish our results....

E 1 -degeneration and d ' d ' ' -lemma

Tai-Wei Chen, Chung-I Ho, Jyh-Haur Teh (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For a double complex ( A , d ' , d ' ' ) , we show that if it satisfies the d ' d ' ' -lemma and the spectral sequence { E r p , q } induced by A does not degenerate at E 0 , then it degenerates at E 1 . We apply this result to prove the degeneration at E 1 of a Hodge-de Rham spectral sequence on compact bi-generalized Hermitian manifolds that satisfy a version of d ' d ' ' -lemma.

Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions

Jean Mawhin, Katarzyna Szymańska-Dębowska (2016)

Mathematica Bohemica

Similarity:

A couple ( σ , τ ) of lower and upper slopes for the resonant second order boundary value problem x ' ' = f ( t , x , x ' ) , x ( 0 ) = 0 , x ' ( 1 ) = 0 1 x ' ( s ) d g ( s ) , with g increasing on [ 0 , 1 ] such that 0 1 d g = 1 , is a couple of functions σ , τ C 1 ( [ 0 , 1 ] ) such that σ ( t ) τ ( t ) for all t [ 0 , 1 ] , σ ' ( t ) f ( t , x , σ ( t ) ) , σ ( 1 ) 0 1 σ ( s ) d g ( s ) , τ ' ( t ) f ( t , x , τ ( t ) ) , τ ( 1 ) 0 1 τ ( s ) d g ( s ) , in the stripe 0 t σ ( s ) d s x 0 t τ ( s ) d s and t [ 0 , 1 ] . It is proved that the existence of such a couple ( σ , τ ) implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.

A compactness result in thin-film micromagnetics and the optimality of the Néel wall

Radu Ignat, Felix Otto (2008)

Journal of the European Mathematical Society

Similarity:

In this paper, we study a model for the magnetization in thin ferromagnetic films. It comes as a variational problem for S 1 -valued maps m ' (the magnetization) of two variables x ' : E ε ( m ' ) = ε | ' · m ' | 2 d x ' + 1 2 | ' | - 1 / 2 ' · m ' 2 d x ' . We are interested in the behavior of minimizers as ε 0 . They are expected to be S 1 -valued maps m ' of vanishing distributional divergence ' · m ' = 0 , so that appropriate boundary conditions enforce line discontinuities. For finite ε > 0 , these line discontinuities are approximated by smooth transition layers, the so-called Néel...

On a singular multi-point third-order boundary value problem on the half-line

Zakia Benbaziz, Smail Djebali (2020)

Mathematica Bohemica

Similarity:

We establish not only sufficient but also necessary conditions for existence of solutions to a singular multi-point third-order boundary value problem posed on the half-line. Our existence results are based on the Krasnosel’skii fixed point theorem on cone compression and expansion. Nonexistence results are proved under suitable a priori estimates. The nonlinearity f = f ( t , x , y ) which satisfies upper and lower-homogeneity conditions in the space variables x , y may be also singular at time t = 0 . Two examples...

On a divisibility problem

Shichun Yang, Florian Luca, Alain Togbé (2019)

Mathematica Bohemica

Similarity:

Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

Elementary operators on Banach algebras and Fourier transform

Miloš Arsenović, Dragoljub Kečkić (2006)

Studia Mathematica

Similarity:

We consider elementary operators x j = 1 n a j x b j , acting on a unital Banach algebra, where a j and b j are separately commuting families of generalized scalar elements. We give an ascent estimate and a lower bound estimate for such an operator. Additionally, we give a weak variant of the Fuglede-Putnam theorem for an elementary operator with strongly commuting families a j and b j , i.e. a j = a j ' + i a j ' ' ( b j = b j ' + i b j ' ' ), where all a j ' and a j ' ' ( b j ' and b j ' ' ) commute. The main tool is an L¹ estimate of the Fourier transform of a certain class...

Duality of matrix-weighted Besov spaces

Svetlana Roudenko (2004)

Studia Mathematica

Similarity:

We determine the duals of the homogeneous matrix-weighted Besov spaces p α q ( W ) and p α q ( W ) which were previously defined in [5]. If W is a matrix A p weight, then the dual of p α q ( W ) can be identified with p ' - α q ' ( W - p ' / p ) and, similarly, [ p α q ( W ) ] * p ' - α q ' ( W - p ' / p ) . Moreover, for certain W which may not be in the A p class, the duals of p α q ( W ) and p α q ( W ) are determined and expressed in terms of the Besov spaces p ' - α q ' ( A Q - 1 ) and p ' - α q ' ( A Q - 1 ) , which we define in terms of reducing operators A Q Q associated with W. We also develop the basic theory of these reducing operator Besov spaces....