Displaying similar documents to “Explicit extension maps in intersections of non-quasi-analytic classes”

On some properties of Chebyshev polynomials

Hacène Belbachir, Farid Bencherif (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Letting T n (resp. U n ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences ( X k T n - k ) k and ( X k U n - k ) k for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space n [ X ] formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also T n and U n admit remarkableness integer coordinates on each of the two basis.

Discriminants of Chebyshev radical extensions

T. Alden Gassert (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let t be any integer and fix an odd prime . Let Φ ( x ) = T n ( x ) - t denote the n -fold composition of the Chebyshev polynomial of degree shifted by t . If this polynomial is irreducible, let K = ( θ ) , where θ is a root of Φ . We use a theorem of Dedekind in conjunction with previous results of the author to give conditions on t that ensure K is monogenic. For other values of t , we apply a result of Guàrdia, Montes, and Nart to obtain a formula for the discriminant of K and compute an integral basis for the ring...

Renormings of c 0 and the minimal displacement problem

Łukasz Piasecki (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The aim of this paper is to show that for every Banach space ( X , · ) containing asymptotically isometric copy of the space c 0 there is a bounded, closed and convex set C X with the Chebyshev radius r ( C ) = 1 such that for every k 1 there exists a k -contractive mapping T : C C with x - T x > 1 1 / k for any x C .

Nevanlinna algebras

A. Haldimann, H. Jarchow (2001)

Studia Mathematica

Similarity:

The Nevanlinna algebras, α p , of this paper are the L p variants of classical weighted area Nevanlinna classes of analytic functions on = z ∈ ℂ: |z| < 1. They are F-algebras, neither locally bounded nor locally convex, with a rich duality structure. For s = (α+2)/p, the algebra F s of analytic functions f: → ℂ such that ( 1 - | z | ) s | f ( z ) | 0 as |z| → 1 is the Fréchet envelope of α p . The corresponding algebra s of analytic f: → ℂ such that s u p z ( 1 - | z | ) s | f ( z ) | < is a complete metric space but fails to be a topological vector space....

The norm of the polynomial truncation operator on the unit disk and on [-1,1]

Tamás Erdélyi (2001)

Colloquium Mathematicae

Similarity:

Let D and ∂D denote the open unit disk and the unit circle of the complex plane, respectively. We denote by ₙ (resp. c ) the set of all polynomials of degree at most n with real (resp. complex) coefficients. We define the truncation operators Sₙ for polynomials P c of the form P ( z ) : = j = 0 n a j z j , a j C , by S ( P ) ( z ) : = j = 0 n a ̃ j z j , a ̃ j : = a j | a j | m i n | a j | , 1 (here 0/0 is interpreted as 1). We define the norms of the truncation operators by S , D r e a l : = s u p P ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | ) , S , D c o m p : = s u p P c ( m a x z D | S ( P ) ( z ) | ) / ( m a x z D | P ( z ) | . Our main theorem establishes the right order of magnitude of the above norms: there is an absolute constant c₁...

The multiplicity of the zero at 1 of polynomials with constrained coefficients

Peter Borwein, Tamás Erdélyi, Géza Kós (2013)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p 1/p , aj ∈ ℂ , such that ( x - 1 ) k divides P(x). For n ∈ ℕ and L > 0 let κ ( n , L ) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L m a x 1 j n | a j | , a j , such that ( x - 1 ) k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c 1 ( n / L ) - 1 κ ( n , L ) c 2 ( n / L ) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈...

Representations of the general linear group over symmetry classes of polynomials

Yousef Zamani, Mahin Ranjbari (2018)

Czechoslovak Mathematical Journal

Similarity:

Let V be the complex vector space of homogeneous linear polynomials in the variables x 1 , ... , x m . Suppose G is a subgroup of S m , and χ is an irreducible character of G . Let H d ( G , χ ) be the symmetry class of polynomials of degree d with respect to G and χ . For any linear operator T acting on V , there is a (unique) induced operator K χ ( T ) End ( H d ( G , χ ) ) acting on symmetrized decomposable polynomials by K χ ( T ) ( f 1 * f 2 * ... * f d ) = T f 1 * T f 2 * ... * T f d . In this paper, we show that the representation T K χ ( T ) of the general linear group G L ( V ) is equivalent to the direct sum of χ ( 1 ) copies...

Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1

(2016)

Acta Arithmetica

Similarity:

For n ∈ ℕ, L > 0, and p ≥ 1 let κ p ( n , L ) be the largest possible value of k for which there is a polynomial P ≢ 0 of the form P ( x ) = j = 0 n a j x j , | a 0 | L ( j = 1 n | a j | p ) 1 / p , a j , such that ( x - 1 ) k divides P(x). For n ∈ ℕ, L > 0, and q ≥ 1 let μ q ( n , L ) be the smallest value of k for which there is a polynomial Q of degree k with complex coefficients such that | Q ( 0 ) | > 1 / L ( j = 1 n | Q ( j ) | q ) 1 / q . We find the size of κ p ( n , L ) and μ q ( n , L ) for all n ∈ ℕ, L > 0, and 1 ≤ p,q ≤ ∞. The result about μ ( n , L ) is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even...

Fréchet differentiability via partial Fréchet differentiability

Luděk Zajíček (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X 1 , , X n be Banach spaces and f a real function on X = X 1 × × X n . Let A f be the set of all points x X at which f is partially Fréchet differentiable but is not Fréchet differentiable. Our results imply that if X 1 , , X n - 1 are Asplund spaces and f is continuous (respectively Lipschitz) on X , then A f is a first category set (respectively a σ -upper porous set). We also prove that if X , Y are separable Banach spaces and f : X Y is a Lipschitz mapping, then there exists a σ -upper porous set A X such that f is Fréchet differentiable...

On open maps and related functions over the Salbany compactification

Mbekezeli Nxumalo (2024)

Archivum Mathematicum

Similarity:

Given a topological space X , let 𝒰 X and η X : X 𝒰 X denote, respectively, the Salbany compactification of X and the compactification map called the Salbany map of X . For every continuous function f : X Y , there is a continuous function 𝒰 f : 𝒰 X 𝒰 Y , called the Salbany lift of f , satisfying ( 𝒰 f ) η X = η Y f . If a continuous function f : X Y has a stably compact codomain Y , then there is a Salbany extension F : 𝒰 X Y of f , not necessarily unique, such that F η X = f . In this paper, we give a condition on a space such that its Salbany map is open. In...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...

The "Full Clarkson-Erdős-Schwartz Theorem" on the closure of non-dense Müntz spaces

Tamás Erdélyi (2003)

Studia Mathematica

Similarity:

Denote by spanf₁,f₂,... the collection of all finite linear combinations of the functions f₁,f₂,... over ℝ. The principal result of the paper is the following. Theorem (Full Clarkson-Erdős-Schwartz Theorem). Suppose ( λ j ) j = 1 is a sequence of distinct positive numbers. Then s p a n 1 , x λ , x λ , . . . is dense in C[0,1] if and only if j = 1 ( λ j ) / ( λ j ² + 1 ) = . Moreover, if j = 1 ( λ j ) / ( λ j ² + 1 ) < , then every function from the C[0,1] closure of s p a n 1 , x λ , x λ , . . . can be represented as an analytic function on z ∈ ℂ ∖ (-∞, 0]: |z| < 1 restricted to (0,1). This result improves an...

A pure smoothness condition for Radó’s theorem for α -analytic functions

Abtin Daghighi, Frank Wikström (2016)

Czechoslovak Mathematical Journal

Similarity:

Let Ω n be a bounded, simply connected -convex domain. Let α + n and let f be a function on Ω which is separately C 2 α j - 1 -smooth with respect to z j (by which we mean jointly C 2 α j - 1 -smooth with respect to Re z j , Im z j ). If f is α -analytic on Ω f - 1 ( 0 ) , then f is α -analytic on Ω . The result is well-known for the case α i = 1 , 1 i n , even when f a priori is only known to be continuous.

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

Induced mappings on hyperspaces F n K ( X )

Enrique Castañeda-Alvarado, Roberto C. Mondragón-Alvarez, Norberto Ordoñez (2024)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a metric continuum X and a positive integer n , F n ( X ) denotes the hyperspace of all nonempty subsets of X with at most n points endowed with the Hausdorff metric. For K F n ( X ) , F n ( K , X ) denotes the set of elements of F n ( X ) containing K and F n K ( X ) denotes the quotient space obtained from F n ( X ) by shrinking F n ( K , X ) to one point set. Given a map f : X Y between continua, f n : F n ( X ) F n ( Y ) denotes the induced map defined by f n ( A ) = f ( A ) . Let K F n ( X ) , we shall consider the induced map in the natural way f n , K : F n K ( X ) F n f ( K ) ( Y ) . In this paper we consider the maps f , f n , f n , K for some...

The number of conjugacy classes of elements of the Cremona group of some given finite order

Jérémy Blanc (2007)

Bulletin de la Société Mathématique de France

Similarity:

This note presents the study of the conjugacy classes of elements of some given finite order n in the Cremona group of the plane. In particular, it is shown that the number of conjugacy classes is infinite if n is even, n = 3 or n = 5 , and that it is equal to 3 (respectively 9 ) if n = 9 (respectively if n = 15 ) and to 1 for all remaining odd orders. Some precise representative elements of the classes are given.