Displaying similar documents to “Sufficient conditions for starlike and convex functions”

Uniformly starlike functions and uniformly convex functions related to the Pascal distribution

Gangadharan Murugusundaramoorthy, Sibel Yalçın (2021)

Mathematica Bohemica

Similarity:

In this article, we aim to find sufficient conditions for a convolution of analytic univalent functions and the Pascal distribution series to belong to the families of uniformly starlike functions and uniformly convex functions in the open unit disk 𝕌 . We also state corollaries of our main results.

Fekete–Szegö Problem for a New Class of Analytic Functions Defined by Using a Generalized Differential Operator

M. K. Aouf, R. M. El-Ashwah, A. A. M. Hassan, A. H. Hassan (2013)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this paper, we obtain Fekete–Szegö inequalities for a generalized class of analytic functions f ( z ) 𝒜 for which 1 + 1 b z D α , β , λ , δ n f ( z ) ' D α , β , λ , δ n f ( z ) - 1 ( α , β , λ , δ 0 ; β > α ; λ > δ ; b * ; n 0 ; z U ) lies in a region starlike with respect to 1 and is symmetric with respect to the real axis.

Univalence, strong starlikeness and integral transforms

M. Obradović, S. Ponnusamy, P. Vasundhra (2005)

Annales Polonici Mathematici

Similarity:

Let represent the class of all normalized analytic functions f in the unit disc Δ. In the present work, we first obtain a necessary condition for convex functions in Δ. Conditions are established for a certain combination of functions to be starlike or convex in Δ. Also, using the Hadamard product as a tool, we obtain sufficient conditions for functions to be in the class of functions whose real part is positive. Moreover, we derive conditions on f and μ so that the non-linear integral...

Initial Maclaurin coefficient estimates for λ -pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions

Abbas Kareem Wanas, Basem Aref Frasin (2022)

Mathematica Bohemica

Similarity:

We introduce and study two certain classes of holomorphic and bi-univalent functions associating λ -pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor–Maclaurin coefficients | a 2 | and | a 3 | for functions belonging to these classes. Further we point out certain special cases for our results.

Faber polynomial coefficient estimates of bi-univalent functions connected with the q -convolution

Sheza M. El-Deeb, Serap Bulut (2023)

Mathematica Bohemica

Similarity:

We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q -convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.

Coefficient inequalities for concave and meromorphically starlike univalent functions

B. Bhowmik, S. Ponnusamy (2008)

Annales Polonici Mathematici

Similarity:

Let denote the open unit disk and f: → ℂ̅ be meromorphic and univalent in with a simple pole at p ∈ (0,1) and satisfying the standard normalization f(0) = f’(0)-1 = 0. Also, assume that f has the expansion f ( z ) = n = - 1 a ( z - p ) , |z-p| < 1-p, and maps onto a domain whose complement with respect to ℂ̅ is a convex set (starlike set with respect to a point w₀ ∈ ℂ, w₀ ≠ 0 resp.). We call such functions concave (meromorphically starlike resp.) univalent functions and denote this class by C o ( p ) ( Σ s ( p , w ) resp.). We prove...

Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function

G. Murugusundaramoorthy, K. Uma (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by T S b μ ( α , β , γ ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class T S b μ ( α , β , γ ) . In particular, we obtain integral means inequalities for the function f ( z ) belongs to the class  T S b μ ( α , β , γ ) in the unit disc.

Region of variability for functions with positive real part

Saminathan Ponnusamy, Allu Vasudevarao (2010)

Annales Polonici Mathematici

Similarity:

For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let γ , β denote the class of all analytic functions P in the unit disk with P(0) = 1 and R e ( e i γ P ( z ) ) > β c o s γ in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability V ( z , λ ) for 0 z P ( ζ ) d ζ when P ranges over the class ( λ ) = P γ , β : P ' ( 0 ) = 2 ( 1 - β ) λ e - i γ c o s γ . As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.

Sakaguchi type functions defined by balancing polynomials

Gunasekar Saravanan, Sudharsanan Baskaran, Balasubramaniam Vanithakumari, Serap Bulut (2025)

Mathematica Bohemica

Similarity:

The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients | a 2 | and | a 3 | have also been estimated.

Generalized problem of starlikeness for products of close-to-star functions

Jacek Dziok (2013)

Annales Polonici Mathematici

Similarity:

We consider functions of the type F ( z ) = z j = 1 n [ f j ( z ) / z ] a j , where a j are real numbers and f j are β j -strongly close-to-starlike functions of order α j . We look for conditions on the center and radius of the disk (a,r) = z:|z-a| < r, |a| < r ≤ 1 - |a|, ensuring that F((a,r)) is a domain starlike with respect to the origin.

Spirallike mappings and univalent subordination chains in n

Ian Graham, Hidetaka Hamada, Gabriela Kohr, Mirela Kohr (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper we consider non-normalized univalent subordination chains and the connection with the Loewner differential equation on the unit ball in n . To this end, we study the most general form of the initial value problem for the transition mapping, and prove the existence and uniqueness of solutions. Also we introduce the notion of generalized spirallikeness with respect to a measurable matrix-valued mapping, and investigate this notion from the point of view of non-normalized univalent...

On products of starlike functions. I

Georgi Dimkov (1991)

Annales Polonici Mathematici

Similarity:

We deal with functions given by the formula F ( z ) = z G ' ( z ) = z j = 1 n ( f j ( z ) / z ) a j where f j ( z ) are starlike of order α j and a j are complex constants. In particular, radii of starlikeness and convexity as well as orders of starlikeness and convexity are found.

Some properties for α -starlike functions with respect to k -symmetric points of complex order

H. E. Darwish, A. Y. Lashin, S. M. Sowileh (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In the present work, we introduce the subclass 𝒯 γ , α k ( ϕ ) , of starlike functions with respect to k -symmetric points of complex order γ ( γ 0 ) in the open unit disc . Some interesting subordination criteria, inclusion relations and the integral representation for functions belonging to this class are provided. The results obtained generalize some known results, and some other new results are obtained.