The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Equicontinuity and Convergent Sequences in the Spaces C ' and M

Primefree shifted Lucas sequences

Lenny Jones (2015)

Acta Arithmetica

Similarity:

We say a sequence = ( s ) n 0 is primefree if |sₙ| is not prime for all n ≥ 0, and to rule out trivial situations, we require that no single prime divides all terms of . In this article, we focus on the particular Lucas sequences of the first kind, a = ( u ) n 0 , defined by u₀ = 0, u₁ = 1, and uₙ = aun-1 + un-2 for n≥2, where a is a fixed integer. More precisely, we show that for any integer a, there exist infinitely many integers k such that both of the shifted sequences a ± k are simultaneously primefree. This...

Ramsey numbers for trees II

Zhi-Hong Sun (2021)

Czechoslovak Mathematical Journal

Similarity:

Let r ( G 1 , G 2 ) be the Ramsey number of the two graphs G 1 and G 2 . For n 1 n 2 1 let S ( n 1 , n 2 ) be the double star given by V ( S ( n 1 , n 2 ) ) = { v 0 , v 1 , ... , v n 1 , w 0 , w 1 , ... , w n 2 } and E ( S ( n 1 , n 2 ) ) = { v 0 v 1 , ... , v 0 v n 1 , v 0 w 0 , w 0 w 1 , ... , w 0 w n 2 } . We determine r ( K 1 , m - 1 , S ( n 1 , n 2 ) ) under certain conditions. For n 6 let T n 3 = S ( n - 5 , 3 ) , T n ' ' = ( V , E 2 ) and T n ' ' ' = ( V , E 3 ) , where V = { v 0 , v 1 , ... , v n - 1 } , E 2 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 1 v n - 2 , v 2 v n - 1 } and E 3 = { v 0 v 1 , ... , v 0 v n - 4 , v 1 v n - 3 , v 2 v n - 2 , v 3 v n - 1 } . We also obtain explicit formulas for r ( K 1 , m - 1 , T n ) , r ( T m ' , T n ) ( n m + 3 ) , r ( T n , T n ) , r ( T n ' , T n ) and r ( P n , T n ) , where T n { T n ' ' , T n ' ' ' , T n 3 } , P n is the path on n vertices and T n ' is the unique tree with n vertices and maximal degree n - 2 .

On the distribution of ( k , r ) -integers in Piatetski-Shapiro sequences

Teerapat Srichan (2021)

Czechoslovak Mathematical Journal

Similarity:

A natural number n is said to be a ( k , r ) -integer if n = a k b , where k > r > 1 and b is not divisible by the r th power of any prime. We study the distribution of such ( k , r ) -integers in the Piatetski-Shapiro sequence { n c } with c > 1 . As a corollary, we also obtain similar results for semi- r -free integers.

On Fourier asymptotics of a generalized Cantor measure

Bérenger Akon Kpata, Ibrahim Fofana, Konin Koua (2010)

Colloquium Mathematicae

Similarity:

Let d be a positive integer and μ a generalized Cantor measure satisfying μ = j = 1 m a j μ S j - 1 , where 0 < a j < 1 , j = 1 m a j = 1 , S j = ρ R + b j with 0 < ρ < 1 and R an orthogonal transformation of d . Then ⎧1 < p ≤ 2 ⇒ ⎨ s u p r > 0 r d ( 1 / α ' - 1 / p ' ) ( J x r | μ ̂ ( y ) | p ' d y ) 1 / p ' D ρ - d / α ' , x d , ⎩ p = 2 ⇒ infr≥1 rd(1/α’-1/2) (∫J₀r|μ̂(y)|² dy)1/2 ≥ D₂ρd/α’ , where J x r = i = 1 d ( x i - r / 2 , x i + r / 2 ) , α’ is defined by ρ d / α ' = ( j = 1 m a j p ) 1 / p and the constants D₁ and D₂ depend only on d and p.

Lucas factoriangular numbers

Bir Kafle, Florian Luca, Alain Togbé (2020)

Mathematica Bohemica

Similarity:

We show that the only Lucas numbers which are factoriangular are 1 and 2 .

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions. We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any...

Representation functions for binary linear forms

Fang-Gang Xue (2024)

Czechoslovak Mathematical Journal

Similarity:

Let be the set of integers, 0 the set of nonnegative integers and F ( x 1 , x 2 ) = u 1 x 1 + u 2 x 2 be a binary linear form whose coefficients u 1 , u 2 are nonzero, relatively prime integers such that u 1 u 2 ± 1 and u 1 u 2 - 2 . Let f : 0 { } be any function such that the set f - 1 ( 0 ) has asymptotic density zero. In 2007, M. B. Nathanson (2007) proved that there exists a set A of integers such that r A , F ( n ) = f ( n ) for all integers n , where r A , F ( n ) = | { ( a , a ' ) : n = u 1 a + u 2 a ' : a , a ' A } | . We add the structure of difference for the binary linear form F ( x 1 , x 2 ) .

Towards Bauer's theorem for linear recurrence sequences

Mariusz Skałba (2003)

Colloquium Mathematicae

Similarity:

Consider a recurrence sequence ( x k ) k of integers satisfying x k + n = a n - 1 x k + n - 1 + . . . + a x k + 1 + a x k , where a , a , . . . , a n - 1 are fixed and a₀ ∈ -1,1. Assume that x k > 0 for all sufficiently large k. If there exists k₀∈ ℤ such that x k < 0 then for each negative integer -D there exist infinitely many rational primes q such that q | x k for some k ∈ ℕ and (-D/q) = -1.

A note on the existence of solutions with prescribed asymptotic behavior for half-linear ordinary differential equations

Manabu Naito (2024)

Mathematica Bohemica

Similarity:

The half-linear differential equation ( | u ' | α sgn u ' ) ' = α ( λ α + 1 + b ( t ) ) | u | α sgn u , t t 0 , is considered, where α and λ are positive constants and b ( t ) is a real-valued continuous function on [ t 0 , ) . It is proved that, under a mild integral smallness condition of b ( t ) which is weaker than the absolutely integrable condition of b ( t ) , the above equation has a nonoscillatory solution u 0 ( t ) such that u 0 ( t ) e - λ t and u 0 ' ( t ) - λ e - λ t ( t ), and a nonoscillatory solution u 1 ( t ) such that u 1 ( t ) e λ t and u 1 ' ( t ) λ e λ t ( t ).

Equivalent conditions for the validity of the Helmholtz decomposition of Muckenhoupt A p -weighted L p -spaces

Ryôhei Kakizawa (2018)

Czechoslovak Mathematical Journal

Similarity:

We discuss the validity of the Helmholtz decomposition of the Muckenhoupt A p -weighted L p -space ( L w p ( Ω ) ) n for any domain Ω in n , n , n 2 , 1 < p < and Muckenhoupt A p -weight w A p . Set p ' : = p / ( p - 1 ) and w ' : = w - 1 / ( p - 1 ) . Then the Helmholtz decomposition of ( L w p ( Ω ) ) n and ( L w ' p ' ( Ω ) ) n and the variational estimate of L w , π p ( Ω ) and L w ' , π p ' ( Ω ) are equivalent. Furthermore, we can replace L w , π p ( Ω ) and L w ' , π p ' ( Ω ) by L w , σ p ( Ω ) and L w ' , σ p ' ( Ω ) , respectively. The proof is based on the reflexivity and orthogonality of L w , π p ( Ω ) and L w , σ p ( Ω ) and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation...

Groups satisfying the two-prime hypothesis with a composition factor isomorphic to PSL 2 ( q ) for q 7

Mark L. Lewis, Yanjun Liu, Hung P. Tong-Viet (2018)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and write cd ( G ) for the degree set of the complex irreducible characters of G . The group G is said to satisfy the two-prime hypothesis if for any distinct degrees a , b cd ( G ) , the total number of (not necessarily different) primes of the greatest common divisor gcd ( a , b ) is at most 2 . We prove an upper bound on the number of irreducible character degrees of a nonsolvable group that has a composition factor isomorphic to PSL 2 ( q ) for q 7 .

On the structure of sequences with forbidden zero-sum subsequences

W. D. Gao, R. Thangadurai (2003)

Colloquium Mathematicae

Similarity:

We study the structure of longest sequences in d which have no zero-sum subsequence of length n (or less). We prove, among other results, that for n = 2 a and d arbitrary, or n = 3 a and d = 3, every sequence of c(n,d)(n-1) elements in d which has no zero-sum subsequence of length n consists of c(n,d) distinct elements each appearing n-1 times, where c ( 2 a , d ) = 2 d and c ( 3 a , 3 ) = 9 .