Displaying similar documents to “Norm convergence of Fejér means of two-dimensional Walsh-Fourier series”

Maximal operators of Fejér means of double Vilenkin-Fourier series

István Blahota, György Gát, Ushangi Goginava (2007)

Colloquium Mathematicae

Similarity:

The main aim of this paper is to prove that the maximal operator σ * : = s u p | σ n , n | of the Fejér means of the double Vilenkin-Fourier series is not bounded from the Hardy space H 1 / 2 to the space weak- L 1 / 2 .

On the Nörlund means of Vilenkin-Fourier series

István Blahota, Lars-Erik Persson, Giorgi Tephnadze (2015)

Czechoslovak Mathematical Journal

Similarity:

We prove and discuss some new ( H p , L p ) -type inequalities of weighted maximal operators of Vilenkin-Nörlund means with non-increasing coefficients { q k : k 0 } . These results are the best possible in a special sense. As applications, some well-known as well as new results are pointed out in the theory of strong convergence of such Vilenkin-Nörlund means. To fulfil our main aims we also prove some new estimates of independent interest for the kernels of these summability results. In the special cases of...

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

Similarity:

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ . ...

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

Similarity:

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

Similarity:

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

A multiplier theorem for Fourier series in several variables

Nakhle Asmar, Florence Newberger, Saleem Watson (2006)

Colloquium Mathematicae

Similarity:

We define a new type of multiplier operators on L p ( N ) , where N is the N-dimensional torus, and use tangent sequences from probability theory to prove that the operator norms of these multipliers are independent of the dimension N. Our construction is motivated by the conjugate function operator on L p ( N ) , to which the theorem applies as a particular example.

Generalized absolute convergence of single and double Vilenkin-Fourier series and related results

Nayna Govindbhai Kalsariya, Bhikha Lila Ghodadra (2024)

Mathematica Bohemica

Similarity:

We consider the Vilenkin orthonormal system on a Vilenkin group G and the Vilenkin-Fourier coefficients f ^ ( n ) , n , of functions f L p ( G ) for some 1 < p 2 . We obtain certain sufficient conditions for the finiteness of the series n = 1 a n | f ^ ( n ) | r , where { a n } is a given sequence of positive real numbers satisfying a mild assumption and 0 < r < 2 . We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of f and give multiplicative...

The Fourier transform in Lebesgue spaces

Erik Talvila (2025)

Czechoslovak Mathematical Journal

Similarity:

For each f L p ( ) ( 1 p < ) it is shown that the Fourier transform is the distributional derivative of a Hölder continuous function. For each p , a norm is defined so that the space of Fourier transforms is isometrically isomorphic to L p ( ) . There is an exchange theorem and inversion in norm.

The Hausdorff operators on the real Hardy spaces H p ( )

Yuichi Kanjin (2001)

Studia Mathematica

Similarity:

We prove that the Hausdorff operator generated by a function ϕ is bounded on the real Hardy space H p ( ) , 0 < p ≤ 1, if the Fourier transform ϕ̂ of ϕ satisfies certain smoothness conditions. As a special case, we obtain the boundedness of the Cesàro operator of order α on H p ( ) , 2/(2α+1) < p ≤ 1. Our proof is based on the atomic decomposition and molecular characterization of H p ( ) .

Noncommutative fractional integrals

Narcisse Randrianantoanina, Lian Wu (2015)

Studia Mathematica

Similarity:

Let ℳ be a hyperfinite finite von Nemann algebra and ( k ) k 1 be an increasing filtration of finite-dimensional von Neumann subalgebras of ℳ. We investigate abstract fractional integrals associated to the filtration ( k ) k 1 . For a finite noncommutative martingale x = ( x k ) 1 k n L ( ) adapted to ( k ) k 1 and 0 < α < 1, the fractional integral of x of order α is defined by setting I α x = k = 1 n ζ k α d x k for an appropriate sequence ( ζ k ) k 1 of scalars. For the case of a noncommutative dyadic martingale in L₁() where is the type II₁ hyperfinite factor...

Boundedness of Fourier integral operators on Fourier Lebesgue spaces and affine fibrations

Fabio Nicola (2010)

Studia Mathematica

Similarity:

We study Fourier integral operators of Hörmander’s type acting on the spaces L p ( d ) c o m p , 1 ≤ p ≤ ∞, of compactly supported distributions whose Fourier transform is in L p . We show that the sharp loss of derivatives for such an operator to be bounded on these spaces is related to the rank r of the Hessian of the phase Φ(x,η) with respect to the space variables x. Indeed, we show that operators of order m = -r|1/2-1/p| are bounded on L p ( d ) c o m p if the mapping x x Φ ( x , η ) is constant on the fibres, of codimension r,...

Convergence of greedy approximation II. The trigonometric system

S. V. Konyagin, V. N. Temlyakov (2003)

Studia Mathematica

Similarity:

We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form G ( f ) : = k Λ f ̂ ( k ) e i ( k , x ) , where Λ d is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in...

On L p integrability and convergence of trigonometric series

Dansheng Yu, Ping Zhou, Songping Zhou (2007)

Studia Mathematica

Similarity:

We first give a necessary and sufficient condition for x - γ ϕ ( x ) L p , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either k = 1 a k c o s k x or k = 1 b k s i n k x , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x)...

The weak type inequality for the Walsh system

Ushangi Goginava (2008)

Studia Mathematica

Similarity:

The main aim of this paper is to prove that the maximal operator σ is bounded from the Hardy space H 1 / 2 to weak- L 1 / 2 and is not bounded from H 1 / 2 to L 1 / 2 .

On the Rademacher maximal function

Mikko Kemppainen (2011)

Studia Mathematica

Similarity:

This paper studies a new maximal operator introduced by Hytönen, McIntosh and Portal in 2008 for functions taking values in a Banach space. The L p -boundedness of this operator depends on the range space; certain requirements on type and cotype are present for instance. The original Euclidean definition of the maximal function is generalized to σ-finite measure spaces with filtrations and the L p -boundedness is shown not to depend on the underlying measure space or the filtration. Martingale...

Marcinkiewicz multipliers of higher variation and summability of operator-valued Fourier series

Earl Berkson (2014)

Studia Mathematica

Similarity:

Let f V r ( ) r ( ) , where, for 1 ≤ r < ∞, V r ( ) (resp., r ( ) ) denotes the class of functions (resp., bounded functions) g: → ℂ such that g has bounded r-variation (resp., uniformly bounded r-variations) on (resp., on the dyadic arcs of ). In the author’s recent article [New York J. Math. 17 (2011)] it was shown that if is a super-reflexive space, and E(·): ℝ → () is the spectral decomposition of a trigonometrically well-bounded operator U ∈ (), then over a suitable non-void open interval of r-values,...

On general Franklin systems

Gevorkyan Gegham, Kamont Anna

Similarity:

AbstractWe study general Franklin systems, i.e. systems of orthonormal piecewise linear functions corresponding to quasi-dyadic sequences of partitions of [0,1]. The following problems are treated: unconditionality of the general Franklin basis in L p , 1 < p < ∞, and H p , 1/2 < p ≤ 1; equivalent conditions for the unconditional convergence of the Franklin series in L p for 0< p ≤ 1; relation between Haar and Franklin series with identical coefficients; characterization of the spaces...

On a relation between norms of the maximal function and the square function of a martingale

Masato Kikuchi (2013)

Colloquium Mathematicae

Similarity:

Let Ω be a nonatomic probability space, let X be a Banach function space over Ω, and let ℳ be the collection of all martingales on Ω. For f = ( f ) n , let Mf and Sf denote the maximal function and the square function of f, respectively. We give some necessary and sufficient conditions for X to have the property that if f, g ∈ ℳ and | | M g | | X | | M f | | X , then | | S g | | X C | | S f | | X , where C is a constant independent of f and g.

Universally divergent Fourier series via Landau's extremal functions

Gerd Herzog, Peer Chr. Kunstmann (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove the existence of functions f A ( 𝔻 ) , the Fourier series of which being universally divergent on countable subsets of 𝕋 = 𝔻 . The proof is based on a uniform estimate of the Taylor polynomials of Landau’s extremal functions on 𝕋 { 1 } .

Uniform convergence of the greedy algorithm with respect to the Walsh system

Martin Grigoryan (2010)

Studia Mathematica

Similarity:

For any 0 < ϵ < 1, p ≥ 1 and each function f L p [ 0 , 1 ] one can find a function g L [ 0 , 1 ) with mesx ∈ [0,1): g ≠ f < ϵ such that its greedy algorithm with respect to the Walsh system converges uniformly on [0,1) and the sequence | c k ( g ) | : k s p e c ( g ) is decreasing, where c k ( g ) is the sequence of Fourier coefficients of g with respect to the Walsh system.

On the distance between ⟨X⟩ and L in the space of continuous BMO-martingales

Litan Yan, Norihiko Kazamaki (2005)

Studia Mathematica

Similarity:

Let X = (Xₜ,ℱₜ) be a continuous BMO-martingale, that is, | | X | | B M O s u p T | | E [ | X - X T | | T ] | | < , where the supremum is taken over all stopping times T. Define the critical exponent b(X) by b ( X ) = b > 0 : s u p T | | E [ e x p ( b ² ( X - X T ) ) | T ] | | < , where the supremum is taken over all stopping times T. Consider the continuous martingale q(X) defined by q ( X ) = E [ X | ] - E [ X | ] . We use q(X) to characterize the distance between ⟨X⟩ and the class L of all bounded martingales in the space of continuous BMO-martingales, and we show that the inequalities 1 / 4 d ( q ( X ) , L ) b ( X ) 4 / d ( q ( X ) , L ) hold for every continuous BMO-martingale X. ...

On the non-equivalence of rearranged Walsh and trigonometric systems in L p

Aicke Hinrichs, Jörg Wenzel (2003)

Studia Mathematica

Similarity:

We consider the question of whether the trigonometric system can be equivalent to some rearrangement of the Walsh system in L p for some p ≠ 2. We show that this question is closely related to a combinatorial problem. This enables us to prove non-equivalence for a number of rearrangements. Previously this was known for the Walsh-Paley order only.