Displaying similar documents to “Refinement type equations: sources and results”

Inequivalence of Wavelet Systems in L ( d ) and B V ( d )

Paweł Bechler (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Theorems stating sufficient conditions for the inequivalence of the d-variate Haar wavelet system and another wavelet system in the spaces L ( d ) and B V ( d ) are proved. These results are used to show that the Strömberg wavelet system and the system of continuous Daubechies wavelets with minimal supports are not equivalent to the Haar system in these spaces. A theorem stating that some systems of smooth Daubechies wavelets are not equivalent to the Haar system in L ( d ) is also shown.

Good-λ inequalities for wavelets of compact support

Sarah V. Cook (2004)

Colloquium Mathematicae

Similarity:

For a wavelet ψ of compact support, we define a square function S w and a maximal function NΛ. We then obtain the L p equivalence of these functions for 0 < p < ∞. We show this equivalence by using good-λ inequalities.

Local means and wavelets in function spaces

Hans Triebel (2008)

Banach Center Publications

Similarity:

The paper deals with local means and wavelet bases in weighted and unweighted function spaces of type B p q s and F p q s on ℝⁿ and on ⁿ.

Asymptotic behaviour of Besov norms via wavelet type basic expansions

Anna Kamont (2016)

Annales Polonici Mathematici

Similarity:

J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.), Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439-455] proved the following asymptotic formula: if Ω d is a smooth bounded domain, 1 ≤ p < ∞ and f W 1 , p ( Ω ) , then l i m s 1 ( 1 - s ) Ω Ω ( | f ( x ) - f ( y ) | p ) / ( | | x - y | | d + s p ) d x d y = K Ω | f ( x ) | p d x , where K is a constant depending only on p and d. The double integral on the left-hand side of the above formula is an equivalent seminorm in the Besov space B p s , p ( Ω ) . The purpose of this paper is to obtain analogous asymptotic formulae...

Haar wavelets on the Lebesgue spaces of local fields of positive characteristic

Biswaranjan Behera (2014)

Colloquium Mathematicae

Similarity:

We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for L p ( K ) , 1 < p < ∞. We also prove that this system, normalized in L p ( K ) , is a democratic basis of L p ( K ) . This also proves that the Haar system is a greedy basis of L p ( K ) for 1 < p < ∞.

Decomposition systems for function spaces

G. Kyriazis (2003)

Studia Mathematica

Similarity:

Let Θ : = θ I e : e E , I D be a decomposition system for L ( d ) indexed over D, the set of dyadic cubes in d , and a finite set E, and let Θ ̃ : = Θ ̃ I e : e E , I D be the corresponding dual functionals. That is, for every f L ( d ) , f = e E I D f , Θ ̃ I e θ I e . We study sufficient conditions on Θ,Θ̃ so that they constitute a decomposition system for Triebel-Lizorkin and Besov spaces. Moreover, these conditions allow us to characterize the membership of a distribution f in these spaces by the size of the coefficients f , Θ ̃ I e , e ∈ E, I ∈ D. Typical examples of such decomposition...

A note on integer translates of a square integrable function on ℝ

Maciej Paluszyński (2010)

Colloquium Mathematicae

Similarity:

We consider the subspace of L²(ℝ) spanned by the integer shifts of one function ψ, and formulate a condition on the family ψ ( · - n ) n = - , which is equivalent to the weight function n = - | ψ ̂ ( · + n ) | ² being > 0 a.e.

Polar wavelets and associated Littlewood-Paley theory

Epperson Jay, Frazier Michael

Similarity:

Abstract We develop an almost orthogonal wavelet-type expansion in ℝ² which is adapted to polar coordinates. We start by defining a product Fourier-Hankel transform f̂ and proving a sampling formula for f such that f̂ is compactly supported. For general f, the sampling formula and a partition of unity lead to an identity of the form f = μ , k , m f , φ μ k m ψ μ k m , in which each function φ μ k m and ψ μ k m is concentrated near a certain annular sector, has compactly supported product Fourier-Hankel transform, and is smooth...

Embeddings of Besov-Morrey spaces on bounded domains

Dorothee D. Haroske, Leszek Skrzypczak (2013)

Studia Mathematica

Similarity:

We study embeddings of spaces of Besov-Morrey type, i d Ω : p , u , q s ( Ω ) p , u , q s ( Ω ) , where Ω d is a bounded domain, and obtain necessary and sufficient conditions for the continuity and compactness of i d Ω . This continues our earlier studies relating to the case of d . Moreover, we also characterise embeddings into the scale of L p spaces or into the space of bounded continuous functions.

Compactness criteria in function spaces

Monika Dörfler, Hans G. Feichtinger, Karlheinz Gröchenig (2002)

Colloquium Mathematicae

Similarity:

The classical criterion for compactness in Banach spaces of functions can be reformulated into a simple tightness condition in the time-frequency domain. This description preserves more explicitly the symmetry between time and frequency than the classical conditions. The result is first stated and proved for L ² ( d ) , and then generalized to coorbit spaces. As special cases, we obtain new characterizations of compactness in Besov-Triebel-Lizorkin, modulation and Bargmann-Fock spaces. ...

Function spaces with dominating mixed smoothness

Jan Vybiral

Similarity:

We study several techniques which are well known in the case of Besov and Triebel-Lizorkin spaces and extend them to spaces with dominating mixed smoothness. We use the ideas of Triebel to prove three important decomposition theorems. We deal with so-called atomic, subatomic and wavelet decompositions. All these theorems have much in common. Roughly speaking, they say that a function f belongs to some function space (say S p , q r ̅ A ) if, and only if, it can be decomposed as f ( x ) = ν m λ ν m a ν m ( x ) , convergence in S’, with...

The Lebesgue constants for the Franklin orthogonal system

Z. Ciesielski, A. Kamont (2004)

Studia Mathematica

Similarity:

To each set of knots t i = i / 2 n for i = 0,...,2ν and t i = ( i - ν ) / n for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space ν , n of all piecewise linear and continuous functions on I = [0,1] with knots t i and the orthogonal projection P ν , n of L²(I) onto ν , n . The main result is l i m ( n - ν ) ν | | P ν , n | | = s u p ν , n : 1 ν n | | P ν , n | | = 2 + ( 2 - 3 ) ² . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².

Gabor meets Littlewood-Paley: Gabor expansions in L p ( d )

Karlheinz Gröchenig, Christopher Heil (2001)

Studia Mathematica

Similarity:

It is known that Gabor expansions do not converge unconditionally in L p and that L p cannot be characterized in terms of the magnitudes of Gabor coefficients. By using a combination of Littlewood-Paley and Gabor theory, we show that L p can nevertheless be characterized in terms of Gabor expansions, and that the partial sums of Gabor expansions converge in L p -norm.

Pointwise regularity associated with function spaces and multifractal analysis

Stéphane Jaffard (2006)

Banach Center Publications

Similarity:

The purpose of multifractal analysis of functions is to determine the Hausdorff dimensions of the sets of points where a function (or a distribution) f has a given pointwise regularity exponent H. This notion has many variants depending on the global hypotheses made on f; if f locally belongs to a Banach space E, then a family of pointwise regularity spaces C E α ( x ) are constructed, leading to a notion of pointwise regularity with respect to E; the case E = L corresponds to the usual Hölder regularity,...

General Haar systems and greedy approximation

Anna Kamont (2001)

Studia Mathematica

Similarity:

We show that each general Haar system is permutatively equivalent in L p ( [ 0 , 1 ] ) , 1 < p < ∞, to a subsequence of the classical (i.e. dyadic) Haar system. As a consequence, each general Haar system is a greedy basis in L p ( [ 0 , 1 ] ) , 1 < p < ∞. In addition, we give an example of a general Haar system whose tensor products are greedy bases in each L p ( [ 0 , 1 ] d ) , 1 < p < ∞, d ∈ ℕ. This is in contrast to [11], where it has been shown that the tensor products of the dyadic Haar system are not greedy bases...

An interpolatory estimate for the UMD-valued directional Haar projection

Richard Lechner

Similarity:

We prove an interpolatory estimate linking the directional Haar projection P ( ε ) to the Riesz transform in the context of Bochner-Lebesgue spaces L p ( ; X ) , 1 < p < ∞, provided X is a UMD-space. If ε i = 1 , the result is the inequality | | P ( ε ) u | | L p ( ; X ) C | | u | | L p ( ; X ) 1 / | | R i u | | L p ( ; X ) 1 - 1 / , (1) where the constant C depends only on n, p, the UMD-constant of X and the Rademacher type of L p ( ; X ) . In order to obtain the interpolatory result (1) we analyze stripe operators S λ , λ ≥ 0, which are used as basic building blocks to dominate the directional Haar projection....

On Clifford-type structures

Wiesław Królikowski

Similarity:

We study several techniques which are well known in the case of Besov and Triebel-Lizorkin spaces and extend them to spaces with dominating mixed smoothness. We use the ideas of Triebel to prove three important decomposition theorems. We deal with so-called atomic, subatomic and wavelet decompositions. All these theorems have much in common. Roughly speaking, they say that a function f belongs to some function space (say S p , q r ̅ A ) if, and only if, it can be decomposed as f ( x ) = ν m λ ν m a ν m ( x ) , convergence in S’, with...

Selivanovski hard sets are hard

Janusz Pawlikowski (2015)

Fundamenta Mathematicae

Similarity:

Let H Z 2 ω . For n ≥ 2, we prove that if Selivanovski measurable functions from 2 ω to Z give as preimages of H all Σₙ¹ subsets of 2 ω , then so do continuous injections.

Non-normality points and nice spaces

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

J. Terasawa in " β X - { p } are non-normal for non-discrete spaces X " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X * is a non-normality point of β X . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.

The Young Measure Representation for Weak Cluster Points of Sequences in M-spaces of Measurable Functions

Hôǹg Thái Nguyêñ, Dariusz Pączka (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let ⟨X,Y⟩ be a duality pair of M-spaces X,Y of measurable functions from Ω ⊂ ℝ ⁿ into d . The paper deals with Y-weak cluster points ϕ̅ of the sequence ϕ ( · , z j ( · ) ) in X, where z j : Ω m is measurable for j ∈ ℕ and ϕ : Ω × m d is a Carathéodory function. We obtain general sufficient conditions, under which, for some negligible set A ϕ , the integral I ( ϕ , ν x ) : = m ϕ ( x , λ ) d ν x ( λ ) exists for x Ω A ϕ and ϕ ̅ ( x ) = I ( ϕ , ν x ) on Ω A ϕ , where ν = ν x x Ω is a measurable-dependent family of Radon probability measures on m .

Theoretical analysis for 1 - 2 minimization with partial support information

Haifeng Li, Leiyan Guo (2025)

Applications of Mathematics

Similarity:

We investigate the recovery of k -sparse signals using the 1 - 2 minimization model with prior support set information. The prior support set information, which is believed to contain the indices of nonzero signal elements, significantly enhances the performance of compressive recovery by improving accuracy, efficiency, reducing complexity, expanding applicability, and enhancing robustness. We assume k -sparse signals 𝐱 with the prior support T which is composed of g true indices and b wrong...

Continuous images of Lindelöf p -groups, σ -compact groups, and related results

Aleksander V. Arhangel&#039;skii (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is shown that there exists a σ -compact topological group which cannot be represented as a continuous image of a Lindelöf p -group, see Example 2.8. This result is based on an inequality for the cardinality of continuous images of Lindelöf p -groups (Theorem 2.1). A closely related result is Corollary 4.4: if a space Y is a continuous image of a Lindelöf p -group, then there exists a covering γ of Y by dyadic compacta such that | γ | 2 ω . We also show that if a homogeneous compact space Y is...

Some properties of algebras of real-valued measurable functions

Ali Akbar Estaji, Ahmad Mahmoudi Darghadam (2023)

Archivum Mathematicum

Similarity:

Let M ( X , 𝒜 ) ( M * ( X , 𝒜 ) ) be the f -ring of all (bounded) real-measurable functions on a T -measurable space ( X , 𝒜 ) , let M K ( X , 𝒜 ) be the family of all f M ( X , 𝒜 ) such that coz ( f ) is compact, and let M ( X , 𝒜 ) be all f M ( X , 𝒜 ) that { x X : | f ( x ) | 1 n } is compact for any n . We introduce realcompact subrings of M ( X , 𝒜 ) , we show that M * ( X , 𝒜 ) is a realcompact subring of M ( X , 𝒜 ) , and also M ( X , 𝒜 ) is a realcompact if and only if ( X , 𝒜 ) is a compact measurable space. For every nonzero real Riesz map ϕ : M ( X , 𝒜 ) , we prove that there is an element x 0 X such that ϕ ( f ) = f ( x 0 ) for every f M ( X , 𝒜 ) if ( X , 𝒜 ) is a compact measurable space....

Generalized atomic subspaces for operators in Hilbert spaces

Prasenjit Ghosh, Tapas Kumar Samanta (2022)

Mathematica Bohemica

Similarity:

We introduce the notion of a g -atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of g -fusion frames. Also, we shall describe the concept of frame operator for a pair of g -fusion Bessel sequences and some of their properties.

Generalized Lebesgue points for Sobolev functions

Nijjwal Karak (2017)

Czechoslovak Mathematical Journal

Similarity:

In many recent articles, medians have been used as a replacement of integral averages when the function fails to be locally integrable. A point x in a metric measure space ( X , d , μ ) is called a generalized Lebesgue point of a measurable function f if the medians of f over the balls B ( x , r ) converge to f ( x ) when r converges to 0 . We know that almost every point of a measurable, almost everywhere finite function is a generalized Lebesgue point and the same is true for every point of a continuous function....

The theory of reproducing systems on locally compact abelian groups

Gitta Kutyniok, Demetrio Labate (2006)

Colloquium Mathematicae

Similarity:

A reproducing system is a countable collection of functions ϕ j : j such that a general function f can be decomposed as f = j c j ( f ) ϕ j , with some control on the analyzing coefficients c j ( f ) . Several such systems have been introduced very successfully in mathematics and its applications. We present a unified viewpoint in the study of reproducing systems on locally compact abelian groups G. This approach gives a novel characterization of the Parseval frame generators for a very general class of reproducing systems...

Persistence of iterated partial sums

Amir Dembo, Jian Ding, Fuchang Gao (2013)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

Let S n ( 2 ) denote the iterated partial sums. That is, S n ( 2 ) = S 1 + S 2 + + S n , where S i = X 1 + X 2 + + X i . Assuming X 1 , X 2 , ... , X n are integrable, zero-mean, i.i.d. random variables, we show that the persistence probabilities p n ( 2 ) : = max 1 i n S i ( 2 ) l t ; 0 c 𝔼 | S n + 1 | ( n + 1 ) 𝔼 | X 1 | , with c 6 30 (and c = 2 whenever X 1 is symmetric). The converse inequality holds whenever the non-zero min ( - X 1 , 0 ) is bounded or when it has only finite third moment and in addition X 1 is squared integrable. Furthermore, p n ( 2 ) n - 1 / 4 for any non-degenerate squared integrable, i.i.d., zero-mean X i . In contrast, we show that for any 0 l t ; γ l t ; 1 / 4 there exist integrable,...

A remark on extrapolation of rearrangement operators on dyadic H s , 0 < s ≤ 1

Stefan Geiss, Paul F. X. Müller, Veronika Pillwein (2005)

Studia Mathematica

Similarity:

For an injective map τ acting on the dyadic subintervals of the unit interval [0,1) we define the rearrangement operator T s , 0 < s < 2, to be the linear extension of the map ( h I ) / ( | I | 1 / s ) ( h τ ( I ) ) ( | τ ( I ) | 1 / s ) , where h I denotes the L -normalized Haar function supported on the dyadic interval I. We prove the following extrapolation result: If there exists at least one 0 < s₀ < 2 such that T s is bounded on H s , then for all 0 < s < 2 the operator T s is bounded on H s .