Displaying similar documents to “A.e. convergence of anisotropic partial Fourier integrals on Euclidean spaces and Heisenberg groups”

Transferring L p eigenfunction bounds from S 2 n + 1 to hⁿ

Valentina Casarino, Paolo Ciatti (2009)

Studia Mathematica

Similarity:

By using the notion of contraction of Lie groups, we transfer L p - L ² estimates for joint spectral projectors from the unit complex sphere S 2 n + 1 in n + 1 to the reduced Heisenberg group hⁿ. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on hⁿ. As a consequence, we prove, in the spirit of Sogge’s work, a discrete restriction theorem for the sub-Laplacian L on hⁿ.

Marcinkiewicz integrals on product spaces

H. Al-Qassem, A. Al-Salman, L. C. Cheng, Y. Pan (2005)

Studia Mathematica

Similarity:

We prove the L p boundedness of the Marcinkiewicz integral operators μ Ω on n × × n k under the condition that Ω L ( l o g L ) k / 2 ( n - 1 × × n k - 1 ) . The exponent k/2 is the best possible. This answers an open question posed by Y. Ding.

Spectral projections for the twisted Laplacian

Herbert Koch, Fulvio Ricci (2007)

Studia Mathematica

Similarity:

Let n ≥ 1, d = 2n, and let (x,y) ∈ ℝⁿ × ℝⁿ be a generic point in ℝ²ⁿ. The twisted Laplacian L = - 1 / 2 j = 1 n [ ( x j + i y j ) ² + ( y j - i x j ) ² ] has the spectrum n + 2k = λ²: k a nonnegative integer. Let P λ be the spectral projection onto the (infinite-dimensional) eigenspace. We find the optimal exponent ϱ(p) in the estimate | | P λ u | | L p ( d ) λ ϱ ( p ) | | u | | L ² ( d ) for all p ∈ [2,∞], improving previous partial results by Ratnakumar, Rawat and Thangavelu, and by Stempak and Zienkiewicz. The expression for ϱ(p) is ϱ(p) = 1/p -1/2 if 2 ≤ p ≤ 2(d+1)/(d-1), ϱ(p) = (d-2)/2 - d/p...

A spectral bound for graph irregularity

Felix Goldberg (2015)

Czechoslovak Mathematical Journal

Similarity:

The imbalance of an edge e = { u , v } in a graph is defined as i ( e ) = | d ( u ) - d ( v ) | , where d ( · ) is the vertex degree. The irregularity I ( G ) of G is then defined as the sum of imbalances over all edges of G . This concept was introduced by Albertson who proved that I ( G ) 4 n 3 / 27 (where n = | V ( G ) | ) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves...

Fourier approximation and embeddings of Sobolev spaces

D. E. Edmunds, V. B. Moscatelli

Similarity:

CONTENTSIntroduction............................................................................................................ 51. Preliminaries............................................................................................................. 82. Embedding into W m , p ( Ω ) into L S ( Ω ) (n>1).......................................... 103. The case n = 1.......................................................................................................... 284. Embedding W m , p ( Ω ) into L φ ( Ω ) ...............................................................

Existence and nonexistence results for a class of linear and semilinear parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities

Boumediene Abdellaoui, Eduardo Colorado, Ireneo Peral (2004)

Journal of the European Mathematical Society

Similarity:

In this work we study the problem u t div ( | x | 2 γ u ) = λ u α | x | 2 ( γ + 1 ) + f in Ω × ( 0 , T ) , u 0 in Ω × ( 0 , T ) , u = 0 on Ω × ( 0 , T ) , u ( x , 0 ) = u 0 ( x ) in Ω , Ω N ( N 2 ) is a bounded regular domain such that 0 Ω , λ > 0 , α > 0 , - < γ < ( N 2 ) / 2 , f and u 0 are positive functions such that f L 1 ( Ω × ( 0 , T ) ) and u 0 L 1 ( Ω ) . The main points under analysis are: (i) spectral instantaneous and complete blow-up related to the Harnack inequality in the case α = 1 , 1 + γ > 0 ; (ii) the nonexistence of solutions if α > 1 , 1 + γ > 0 ; (iii) a uniqueness result for weak solutions (in the distribution sense); (iv) further results on existence of weak solutions...

Inequalities for real number sequences with applications in spectral graph theory

Emina Milovanović, Şerife Burcu Bozkurt Altındağ, Marjan Matejić, Igor Milovanović (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a = ( a 1 , a 2 , ... , a n ) be a nonincreasing sequence of positive real numbers. Denote by S = { 1 , 2 , ... , n } the index set and by J k = { I = { r 1 , r 2 , ... , r k } , 1 r 1 < r 2 < < r k n } the set of all subsets of S of cardinality k , 1 k n - 1 . In addition, denote by a I = a r 1 + a r 2 + + a r k , 1 k n - 1 , 1 r 1 < r 2 < < r k n , the sum of k arbitrary elements of sequence a , where a I 1 = a 1 + a 2 + + a k and a I n = a n - k + 1 + a n - k + 2 + + a n . We consider bounds of the quantities R S k ( a ) = a I 1 / a I n , L S k ( a ) = a I 1 - a I n and S k , α ( a ) = I J k a I α in terms of A = i = 1 n a i and B = i = 1 n a i 2 . Then we use the obtained results to generalize some results regarding Laplacian and normalized Laplacian eigenvalues of graphs.

H calculus and dilatations

Andreas M. Fröhlich, Lutz Weis (2006)

Bulletin de la Société Mathématique de France

Similarity:

We characterise the boundedness of the H calculus of a sectorial operator in terms of dilation theorems. We show e. g. that if - A generates a bounded analytic C 0 semigroup ( T t ) on a UMD space, then the H calculus of A is bounded if and only if ( T t ) has a dilation to a bounded group on L 2 ( [ 0 , 1 ] , X ) . This generalises a Hilbert space result of C.LeMerdy. If X is an L p space we can choose another L p space in place of L 2 ( [ 0 , 1 ] , X ) .

On the perturbation functions and similarity orbits

Haïkel Skhiri (2008)

Studia Mathematica

Similarity:

We show that the essential spectral radius ϱ e ( T ) of T ∈ B(H) can be calculated by the formula ϱ e ( T ) = inf · ( X T X - 1 ) : X an invertible operator, where · ( T ) is a Φ₁-perturbation function introduced by Mbekhta [J. Operator Theory 51 (2004)]. Also, we show that if · ( T ) is a Φ₂-perturbation function [loc. cit.] and if T is a Fredholm operator, then d i s t ( 0 , σ e ( T ) ) = sup · ( X T X - 1 ) : X an invertible operator.

On the bounds of Laplacian eigenvalues of k -connected graphs

Xiaodan Chen, Yaoping Hou (2015)

Czechoslovak Mathematical Journal

Similarity:

Let μ n - 1 ( G ) be the algebraic connectivity, and let μ 1 ( G ) be the Laplacian spectral radius of a k -connected graph G with n vertices and m edges. In this paper, we prove that μ n - 1 ( G ) 2 n k 2 ( n ( n - 1 ) - 2 m ) ( n + k - 2 ) + 2 k 2 , with equality if and only if G is the complete graph K n or K n - e . Moreover, if G is non-regular, then μ 1 ( G ) < 2 Δ - 2 ( n Δ - 2 m ) k 2 2 ( n Δ - 2 m ) ( n 2 - 2 n + 2 k ) + n k 2 , where Δ stands for the maximum degree of G . Remark that in some cases, these two inequalities improve some previously known results.

On the convergence and character spectra of compact spaces

István Juhász, William A. R. Weiss (2010)

Fundamenta Mathematicae

Similarity:

An infinite set A in a space X converges to a point p (denoted by A → p) if for every neighbourhood U of p we have |A∖U| < |A|. We call cS(p,X) = |A|: A ⊂ X and A → p the convergence spectrum of p in X and cS(X) = ⋃cS(x,X): x ∈ X the convergence spectrum of X. The character spectrum of a point p ∈ X is χS(p,X) = χ(p,Y): p is non-isolated in Y ⊂ X, and χS(X) = ⋃χS(x,X): x ∈ X is the character spectrum of X. If κ ∈ χS(p,X) for a compactum X then κ,cf(κ) ⊂ cS(p,X). A selection of our...

Estimates of the principal eigenvalue of the p -Laplacian and the p -biharmonic operator

Jiří Benedikt (2015)

Mathematica Bohemica

Similarity:

We survey recent results concerning estimates of the principal eigenvalue of the Dirichlet p -Laplacian and the Navier p -biharmonic operator on a ball of radius R in N and its asymptotics for p approaching 1 and . Let p tend to . There is a critical radius R C of the ball such that the principal eigenvalue goes to for 0 < R R C and to 0 for R > R C . The critical radius is R C = 1 for any N for the p -Laplacian and R C = 2 N in the case of the p -biharmonic operator. When p approaches 1 , the principal eigenvalue...