Displaying similar documents to “Jeśmanowicz' conjecture with congruence relations”

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

Similarity:

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

On the quartic character of quadratic units

Zhi-Hong Sun (2013)

Acta Arithmetica

Similarity:

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, d = 2 r d and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine ( b + ( b ² + 4 α ) / 2 ) ( p - 1 ) / 4 ) ( m o d p ) for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and ( 2 a + 4 a ² + 1 ) ( p - 1 ) / 4 ( m o d p ) for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for U ( p - 1 ) / 4 ( m o d p ) and the criterion for p | U ( p - 1 ) / 8 (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and...

Finiteness results for Diophantine triples with repdigit values

Attila Bérczes, Florian Luca, István Pink, Volker Ziegler (2016)

Acta Arithmetica

Similarity:

Let g ≥ 2 be an integer and g be the set of repdigits in base g. Let g be the set of Diophantine triples with values in g ; that is, g is the set of all triples (a,b,c) ∈ ℕ³ with c < b < a such that ab + 1, ac + 1 and bc + 1 lie in the set g . We prove effective finiteness results for the set g .

Diophantine equations involving factorials

Horst Alzer, Florian Luca (2017)

Mathematica Bohemica

Similarity:

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

On systems of diophantine equations with a large number of solutions

Jerzy Browkin (2010)

Colloquium Mathematicae

Similarity:

We consider systems of equations of the form x i + x j = x k and x i · x j = x k , which have finitely many integer solutions, proposed by A. Tyszka. For such a system we construct a slightly larger one with much more solutions than the given one.

Multiplicative relations on binary recurrences

Florian Luca, Volker Ziegler (2013)

Acta Arithmetica

Similarity:

Given a binary recurrence u n n 0 , we consider the Diophantine equation u n 1 x 1 u n L x L = 1 with nonnegative integer unknowns n 1 , . . . , n L , where n i n j for 1 ≤ i < j ≤ L, m a x | x i | : 1 i L K , and K is a fixed parameter. We show that the above equation has only finitely many solutions and the largest one can be explicitly bounded. We demonstrate the strength of our method by completely solving a particular Diophantine equation of the above form.

On the diophantine equation x y - y x = c z

Zhongfeng Zhang, Jiagui Luo, Pingzhi Yuan (2012)

Colloquium Mathematicae

Similarity:

Applying results on linear forms in p-adic logarithms, we prove that if (x,y,z) is a positive integer solution to the equation x y - y x = c z with gcd(x,y) = 1 then (x,y,z) = (2,1,k), (3,2,k), k ≥ 1 if c = 1, and either ( x , y , z ) = ( c k + 1 , 1 , k ) , k ≥ 1 or 2 x < y m a x 1 . 5 × 10 10 , c if c ≥ 2.

Diophantine triples with values in binary recurrences

Clemens Fuchs, Florian Luca, Laszlo Szalay (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

In this paper, we study triples a , b and c of distinct positive integers such that a b + 1 , a c + 1 and b c + 1 are all three members of the same binary recurrence sequence.

A note on the article by F. Luca “On the system of Diophantine equations a ² + b ² = ( m ² + 1 ) r and a x + b y = ( m ² + 1 ) z ” (Acta Arith. 153 (2012), 373-392)

Takafumi Miyazaki (2014)

Acta Arithmetica

Similarity:

Let r,m be positive integers with r > 1, m even, and A,B be integers satisfying A + B ( - 1 ) = ( m + ( - 1 ) ) r . We prove that the Diophantine equation | A | x + | B | y = ( m ² + 1 ) z has no positive integer solutions in (x,y,z) other than (x,y,z) = (2,2,r), whenever r > 10 74 or m > 10 34 . Our result is an explicit refinement of a theorem due to F. Luca.

On sums of binomial coefficients modulo p²

Zhi-Wei Sun (2012)

Colloquium Mathematicae

Similarity:

Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) / m k ( m o d p ² ) , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and p a > 3 , then k = 0 p a - 1 ( h p a - 1 k ) ( 2 k k ) ( - h / 2 ) k ( ( 1 - 2 h ) / ( p a ) ) ( 1 + h ( ( 4 - 2 / h ) p - 1 - 1 ) ) ( m o d p ² ) , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If p a > 3 then k = 0 p a - 1 ( p a - 1 k ) ( 2 k k ) ( - 1 ) k 3 p - 1 ( p a / 3 ) ( m o d p ² ) .

On power integral bases for certain pure number fields defined by x 18 - m

Lhoussain El Fadil (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let K = ( α ) be a number field generated by a complex root α of a monic irreducible polynomial f ( x ) = x 18 - m , m 1 , is a square free rational integer. We prove that if m 2 or 3 ( mod 4 ) and m ¬ 1 ( mod 9 ) , then the number field K is monogenic. If m 1 ( mod 4 ) or m 1 ( mod 9 ) , then the number field K is not monogenic.

Diophantine equations and class number of imaginary quadratic fields

Zhenfu Cao, Xiaolei Dong (2000)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let A, D, K, k ∈ ℕ with D square free and 2 ∤ k,B = 1,2 or 4 and μ i - 1 , 1 ( i = 1 , 2 ) , and let h ( - 2 1 - e D ) ( e = 0 o r 1 ) denote the class number of the imaginary quadratic field ( ( - 2 1 - e D ) ) . In this paper, we give the all-positive integer solutions of the Diophantine equation Ax² + μ₁B = K((Ay² + μ₂B)/K)ⁿ, 2 ∤ n, n > 1 and we prove that if D > 1, then h ( - 2 1 - e D ) 0 ( m o d n ) , where D, and n satisfy k - 2 e + 1 = D x ² , x ∈ ℕ, 2 ∤ n, n > 1. The results are valuable for the realization of quadratic field cryptosystem.

On the Lucas sequence equations Vₙ = kVₘ and Uₙ = kUₘ

Refik Keskin, Zafer Şiar (2013)

Colloquium Mathematicae

Similarity:

Let P and Q be nonzero integers. The sequences of generalized Fibonacci and Lucas numbers are defined by U₀ = 0, U₁ = 1 and U n + 1 = P U - Q U n - 1 for n ≥ 1, and V₀ = 2, V₁ = P and V n + 1 = P V - Q V n - 1 for n ≥ 1, respectively. In this paper, we assume that P ≥ 1, Q is odd, (P,Q) = 1, Vₘ ≠ 1, and V r 1 . We show that there is no integer x such that V = V r V x ² when m ≥ 1 and r is an even integer. Also we completely solve the equation V = V V r x ² for m ≥ 1 and r ≥ 1 when Q ≡ 7 (mod 8) and x is an even integer. Then we show that when P ≡ 3 (mod 4) and...

Inhomogeneous Diophantine approximation with general error functions

Lingmin Liao, Michał Rams (2013)

Acta Arithmetica

Similarity:

Let α be an irrational and φ: ℕ → ℝ⁺ be a function decreasing to zero. Let ω ( α ) : = s u p θ 1 : l i m i n f n n θ | | n α | = 0 . F o r a n y α w i t h a g i v e n ω ( α ) , w e g i v e s o m e s h a r p e s t i m a t e s f o r t h e H a u s d o r f f d i m e n s i o n o f t h e s e t E φ ( α ) := y ∈ ℝ: ||nα -y|| < φ(n) for infinitely many n, where ||·|| denotes the distance to the nearest integer.

Diophantine approximations with Fibonacci numbers

Victoria Zhuravleva (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let F n be the n -th Fibonacci number. Put ϕ = 1 + 5 2 . We prove that the following inequalities hold for any real α : 1) inf n | | F n α | | ϕ - 1 ϕ + 2 , 2) lim inf n | | F n α | | 1 5 , 3) lim inf n | | ϕ n α | | 1 5 . These results are the best possible.