Displaying similar documents to “Asymptotic behavior of the invariant measure for a diffusion related to an NA group”

Sub-Laplacian with drift in nilpotent Lie groups

Camillo Melzi (2003)

Colloquium Mathematicae

Similarity:

We consider the heat kernel ϕ t corresponding to the left invariant sub-Laplacian with drift term in the first commutator of the Lie algebra, on a nilpotent Lie group. We improve the results obtained by G. Alexopoulos in [1], [2] proving the “exact Gaussian factor” exp(-|g|²/4(1+ε)t) in the large time upper Gaussian estimate for ϕ t . We also obtain a large time lower Gaussian estimate for ϕ t .

The covering semigroup of invariant control systems on Lie groups

Víctor Ayala, Eyüp Kizil (2016)

Kybernetika

Similarity:

It is well known that the class of invariant control systems is really relevant both from theoretical and practical point of view. This work was an attempt to connect an invariant systems on a Lie group G with its covering space. Furthermore, to obtain algebraic properties of this set. Let G be a Lie group with identity e and Σ 𝔤 a cone in the Lie algebra 𝔤 of G that satisfies the Lie algebra rank condition. We use a formalism developed by Sussmann, to obtain an algebraic structure on...

The evolution and Poisson kernels on nilpotent meta-abelian groups

Richard Penney, Roman Urban (2013)

Studia Mathematica

Similarity:

Let S be a semidirect product S = N⋊ A where N is a connected and simply connected, non-abelian, nilpotent meta-abelian Lie group and A is isomorphic to k , k>1. We consider a class of second order left-invariant differential operators on S of the form α = L a + Δ α , where α k , and for each a k , L a is left-invariant second order differential operator on N and Δ α = Δ - α , , where Δ is the usual Laplacian on k . Using some probabilistic techniques (e.g., skew-product formulas for diffusions on S and N respectively)...

On the nilpotent residuals of all subalgebras of Lie algebras

Wei Meng, Hailou Yao (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒩 denote the class of nilpotent Lie algebras. For any finite-dimensional Lie algebra L over an arbitrary field 𝔽 , there exists a smallest ideal I of L such that L / I 𝒩 . This uniquely determined ideal of L is called the nilpotent residual of L and is denoted by L 𝒩 . In this paper, we define the subalgebra S ( L ) = H L I L ( H 𝒩 ) . Set S 0 ( L ) = 0 . Define S i + 1 ( L ) / S i ( L ) = S ( L / S i ( L ) ) for i 1 . By S ( L ) denote the terminal term of the ascending series. It is proved that L = S ( L ) if and only if L 𝒩 is nilpotent. In addition, we investigate the basic properties of a...

The groups of automorphisms of the Witt W n and Virasoro Lie algebras

Vladimir V. Bavula (2016)

Czechoslovak Mathematical Journal

Similarity:

Let L n = K [ x 1 ± 1 , ... , x n ± 1 ] be a Laurent polynomial algebra over a field K of characteristic zero, W n : = Der K ( L n ) the Lie algebra of K -derivations of the algebra L n , the so-called Witt Lie algebra, and let Vir be the Virasoro Lie algebra which is a 1 -dimensional central extension of the Witt Lie algebra. The Lie algebras W n and Vir are infinite dimensional Lie algebras. We prove that the following isomorphisms of the groups of Lie algebra automorphisms hold: Aut Lie ( Vir ) Aut Lie ( W 1 ) { ± 1 } K * , and give a short proof that Aut Lie ( W n ) Aut K - alg ( L n ) GL n ( ) K * n .

Leibniz's rule on two-step nilpotent Lie groups

Krystian Bekała (2016)

Colloquium Mathematicae

Similarity:

Let be a nilpotent Lie algebra which is also regarded as a homogeneous Lie group with the Campbell-Hausdorff multiplication. This allows us to define a generalized multiplication f g = ( f g ) of two functions in the Schwartz class (*), where and are the Abelian Fourier transforms on the Lie algebra and on the dual * and ∗ is the convolution on the group . In the operator analysis on nilpotent Lie groups an important notion is the one of symbolic calculus which can be viewed as a higher order...

SCAP-subalgebras of Lie algebras

Sara Chehrazi, Ali Reza Salemkar (2016)

Czechoslovak Mathematical Journal

Similarity:

A subalgebra H of a finite dimensional Lie algebra L is said to be a SCAP -subalgebra if there is a chief series 0 = L 0 L 1 ... L t = L of L such that for every i = 1 , 2 , ... , t , we have H + L i = H + L i - 1 or H L i = H L i - 1 . This is analogous to the concept of SCAP -subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its SCAP -subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable.

𝔤 -quasi-Frobenius Lie algebras

David N. Pham (2016)

Archivum Mathematicum

Similarity:

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to...

One-parameter contractions of Lie-Poisson brackets

Oksana Yakimova (2014)

Journal of the European Mathematical Society

Similarity:

We consider contractions of Lie and Poisson algebras and the behaviour of their centres under contractions. A polynomial Poisson algebra 𝒜 = 𝕂 [ 𝔸 n ] is said to be of Kostant type, if its centre Z ( 𝒜 ) is freely generated by homogeneous polynomials F 1 , ... , F r such that they give Kostant’s regularity criterion on 𝔸 n ( d x F i are linear independent if and only if the Poisson tensor has the maximal rank at x ). If the initial Poisson algebra is of Kostant type and F i satisfy a certain degree-equality, then the contraction...

Local superderivations on Lie superalgebra 𝔮 ( n )

Haixian Chen, Ying Wang (2018)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔮 ( n ) be a simple strange Lie superalgebra over the complex field . In a paper by A. Ayupov, K. Kudaybergenov (2016), the authors studied the local derivations on semi-simple Lie algebras over and showed the difference between the properties of local derivations on semi-simple and nilpotent Lie algebras. We know that Lie superalgebras are a generalization of Lie algebras and the properties of some Lie superalgebras are similar to those of semi-simple Lie algebras, but 𝔭 ( n ) is an exception....

Hall algebra of morphism category

QingHua Chen, Liwang Zhang (2024)

Czechoslovak Mathematical Journal

Similarity:

This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra ( C 2 ( 𝒫 ) ) , where C 2 ( 𝒫 ) is the category of morphisms between projective objects in a finitary hereditary exact category 𝒜 . When 𝒜 is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra , which is spanned by isoclasses of indecomposable objects in C 2 ( 𝒫 ) . As applications, we demonstrate that contains a Lie subalgebra isomorphic to the central...

𝒟 n , r is not potentially nilpotent for n 4 r - 2

Yan Ling Shao, Yubin Gao, Wei Gao (2016)

Czechoslovak Mathematical Journal

Similarity:

An n × n sign pattern 𝒜 is said to be potentially nilpotent if there exists a nilpotent real matrix B with the same sign pattern as 𝒜 . Let 𝒟 n , r be an n × n sign pattern with 2 r n such that the superdiagonal and the ( n , n ) entries are positive, the ( i , 1 ) ( i = 1 , , r ) and ( i , i - r + 1 ) ( i = r + 1 , , n ) entries are negative, and zeros elsewhere. We prove that for r 3 and n 4 r - 2 , the sign pattern 𝒟 n , r is not potentially nilpotent, and so not spectrally arbitrary.

Partial differential equations in Banach spaces involving nilpotent linear operators

Antonia Chinnì, Paolo Cubiotti (1996)

Annales Polonici Mathematici

Similarity:

Let E be a Banach space. We consider a Cauchy problem of the type ⎧ D t k u + j = 0 k - 1 | α | m A j , α ( D t j D x α u ) = f in n + 1 , ⎨ ⎩ D t j u ( 0 , x ) = φ j ( x ) in n , j=0,...,k-1, where each A j , α is a given continuous linear operator from E into itself. We prove that if the operators A j , α are nilpotent and pairwise commuting, then the problem is well-posed in the space of all functions u C ( n + 1 , E ) whose derivatives are equi-bounded on each bounded subset of n + 1 .

-homomorphisms of Lie algebras

Aleksander A. Lashkhi (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Si studiano gli omomorfismi reticolari ( -omomorfismi) di algebre di Lie sopra anelli commutativi con unità. Le algebre di Lie sopra un campo e le p -algebre di Lie non ammettono -omomorfismi propri. Si assegnano condizioni necessarie e sufficienti affinchè un'algebra di Lie periodica o mista possieda un « -omomorfismo su una catena di lunghezza n .

Relations between Shy Sets and Sets of ν p -Measure Zero in Solovay’s Model

G. Pantsulaia (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

An example of a non-zero non-atomic translation-invariant Borel measure ν p on the Banach space p ( 1 p ) is constructed in Solovay’s model. It is established that, for 1 ≤ p < ∞, the condition " ν p -almost every element of p has a property P" implies that “almost every” element of p (in the sense of [4]) has the property P. It is also shown that the converse is not valid.