The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Interpolating discrete multiplicity varieties for A p ( )

Asymptotics of eigensections on toric varieties

A. Huckleberry, H. Sebert (2013)

Annales de l’institut Fourier

Similarity:

Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities | ϕ n | 2 = | s N | 2 / | | s N | | L 2 2 for eigensections s N Γ ( X , L N ) approaching a semiclassical ray. Here X is a normal compact toric variety and L is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate...

On varieties of Hilbert type

Lior Bary-Soroker, Arno Fehm, Sebastian Petersen (2014)

Annales de l’institut Fourier

Similarity:

A variety X over a field K is of Hilbert type if X ( K ) is not thin. We prove that if f : X S is a dominant morphism of K -varieties and both S and all fibers f - 1 ( s ) , s S ( K ) , are of Hilbert type, then so is X . We apply this to answer a question of Serre on products of varieties and to generalize a result of Colliot-Thélène and Sansuc on algebraic groups.

Bases for certain varieties of completely regular semigroups

Mario Petrich (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Completely regular semigroups equipped with the unary operation of inversion within their maximal subgroups form a variety, denoted by 𝒞ℛ . The lattice of subvarieties of 𝒞ℛ is denoted by ( 𝒞ℛ ) . For each variety in an -subsemilattice Γ of ( 𝒞ℛ ) , we construct at least one basis of identities, and for some important varieties, several. We single out certain remarkable types of bases of general interest. As an application for the local relation L , we construct 𝐋 -classes of all varieties in Γ . Two...

Some Remarks on Prym-Tyurin Varieties

Giuliano Parigi (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

The aims of the present paper can be described as follows: a) In [2] Beauville showed that if some endomorphism u a Jacobian J ( C ) has connected kernel, the principal polarization on J ( C ) induces a multiple of the principal polarization on the image of u . We reformulate and complete this theorem proving "constructively" the following: Theorem. Let Z J ( C ) be an abelian subvariety and Y its complementary variety. Z is a Prym-Tyurin variety with respect to J ( C ) if and only if the following sequence...

Birational Finite Extensions of Mappings from a Smooth Variety

Marek Karaś (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We present an example of finite mappings of algebraic varieties f:V → W, where V ⊂ kⁿ, W k n + 1 , and F : k k n + 1 such that F | V = f and gdeg F = 1 < gdeg f (gdeg h means the number of points in the generic fiber of h). Thus, in some sense, the result of this note improves our result in J. Pure Appl. Algebra 148 (2000) where it was shown that this phenomenon can occur when V ⊂ kⁿ, W k m with m ≥ n+2. In the case V,W ⊂ kⁿ a similar example does not exist.

Polarizations of Prym varieties for Weyl groups via abelianization

Herbert Lange, Christian Pauly (2009)

Journal of the European Mathematical Society

Similarity:

Let π : Z X be a Galois covering of smooth projective curves with Galois group the Weyl group of a simple and simply connected Lie group G . For any dominant weight λ consider the curve Y = Z / Stab ( λ ) . The Kanev correspondence defines an abelian subvariety P λ of the Jacobian of Y . We compute the type of the polarization of the restriction of the canonical principal polarization of Jac ( Y ) to P λ in some cases. In particular, in the case of the group E 8 we obtain families of Prym-Tyurin varieties. The main idea is...

Varieties of Algebras of Polynomial Growth

Daniela La Mattina (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

Let 𝒱 be a proper variety of associative algebras over a field F of characteristic zero. It is well-known that 𝒱 can have polynomial or exponential growth and here we present some classification results of varieties of polynomial growth. In particular we classify all subvarieties of the varieties of almost polynomial growth, i.e., the subvarieties of 𝐯𝐚𝐫 ( G ) and 𝐯𝐚𝐫 ( U T 2 ) , where G is the Grassmann algebra and U T 2 is the algebra of 2 × 2 upper triangular matrices.

Construction of Mendelsohn designs by using quasigroups of ( 2 , q ) -varieties

Lidija Goračinova-Ilieva, Smile Markovski (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let q be a positive integer. An algebra is said to have the property ( 2 , q ) if all of its subalgebras generated by two distinct elements have exactly q elements. A variety 𝒱 of algebras is a variety with the property ( 2 , q ) if every member of 𝒱 has the property ( 2 , q ) . Such varieties exist only in the case of q prime power. By taking the universes of the subalgebras of any finite algebra of a variety with the property ( 2 , q ) , 2 < q , blocks of Steiner system of type ( 2 , q ) are obtained. The stated correspondence...

Quiver varieties and the character ring of general linear groups over finite fields

Emmanuel Letellier (2013)

Journal of the European Mathematical Society

Similarity:

Given a tuple ( 𝒳 1 , ... , 𝒳 k ) of irreducible characters of G L n ( F q ) we define a star-shaped quiver Γ together with a dimension vector v . Assume that ( 𝒳 1 , ... , 𝒳 k ) is generic. Our first result is a formula which expresses the multiplicity of the trivial character in the tensor product 𝒳 1 𝒳 k as the trace of the action of some Weyl group on the intersection cohomology of some (non-affine) quiver varieties associated to ( Γ , v ) . The existence of such a quiver variety is subject to some condition. Assuming that this condition is satisfied,...

J -invariant of linear algebraic groups

Viktor Petrov, Nikita Semenov, Kirill Zainoulline (2008)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let G be a semisimple linear algebraic group of inner type over a field F , and let X be a projective homogeneous G -variety such that G splits over the function field of X . We introduce the J -invariant of G which characterizes the motivic behavior of X , and generalizes the J -invariant defined by A. Vishik in the context of quadratic forms. We use this J -invariant to provide motivic decompositions of all generically split projective homogeneous G -varieties, e.g. Severi-Brauer varieties,...

Singularities of theta divisors and the geometry of 𝒜 5

Gavril Farkas, Samuele Grushevsky, Salvati R. Manni, Alessandro Verra (2014)

Journal of the European Mathematical Society

Similarity:

We study the codimension two locus H in 𝒜 g consisting of principally polarized abelian varieties whose theta divisor has a singularity that is not an ordinary double point. We compute the class [ H ] C H 2 ( 𝒜 g ) for every g . For g = 4 , this turns out to be the locus of Jacobians with a vanishing theta-null. For g = 5 , via the Prym map we show that H 𝒜 5 has two components, both unirational, which we describe completely. We then determine the slope of the effective cone of 𝒜 5 ¯ and show that the component N 0 ' ¯ of the Andreotti-Mayer...

On tangent cones to Schubert varieties in type E

Mikhail V. Ignatyev, Aleksandr A. Shevchenko (2020)

Communications in Mathematics

Similarity:

We consider tangent cones to Schubert subvarieties of the flag variety G / B , where B is a Borel subgroup of a reductive complex algebraic group G of type E 6 , E 7 or E 8 . We prove that if w 1 and w 2 form a good pair of involutions in the Weyl group W of G then the tangent cones C w 1 and C w 2 to the corresponding Schubert subvarieties of G / B do not coincide as subschemes of the tangent space to G / B at the neutral point.

Finiteness of cominuscule quantum K -theory

Anders S. Buch, Pierre-Emmanuel Chaput, Leonardo C. Mihalcea, Nicolas Perrin (2013)

Annales scientifiques de l'École Normale Supérieure

Similarity:

The product of two Schubert classes in the quantum K -theory ring of a homogeneous space X = G / P is a formal power series with coefficients in the Grothendieck ring of algebraic vector bundles on  X . We show that if X is cominuscule, then this power series has only finitely many non-zero terms. The proof is based on a geometric study of boundary Gromov-Witten varieties in the Kontsevich moduli space, consisting of stable maps to  X that take the marked points to general Schubert varieties and...

The Brauer group and the Brauer–Manin set of products of varieties

Alexei N. Skorobogatov, Yuri G. Zahrin (2014)

Journal of the European Mathematical Society

Similarity:

Let X and Y be smooth and projective varieties over a field k finitely generated over Q , and let X ¯ and Y ¯ be the varieties over an algebraic closure of k obtained from X and Y , respectively, by extension of the ground field. We show that the Galois invariant subgroup of Br ( X ¯ ) Br( Y ¯ ) has finite index in the Galois invariant subgroup of Br ( X ¯ × Y ¯ ) . This implies that the cokernel of the natural map Br ( X ) Br ( Y ) Br ( X × Y ) is finite when k is a number field. In this case we prove that the Brauer–Manin set of the...

k-Normalization and (k+1)-level inflation of varieties

Valerie Cheng, Shelly Wismath (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities or varieties. For any variety...

On Zariski's theorem in positive characteristic

Ilya Tyomkin (2013)

Journal of the European Mathematical Society

Similarity:

In the current paper we show that the dimension of a family V of irreducible reduced curves in a given ample linear system on a toric surface S over an algebraically closed field is bounded from above by - K S . C + p g ( C ) - 1 , where C denotes a general curve in the family. This result generalizes a famous theorem of Zariski to the case of positive characteristic. We also explore new phenomena that occur in positive characteristic: We show that the equality 𝚍𝚒𝚖 ( V ) = - K S . C + p g ( C ) - 1 does not imply the nodality of C even if C belongs...

Non-supersingular hyperelliptic jacobians

Yuri G. Zarhin (2004)

Bulletin de la Société Mathématique de France

Similarity:

Let K be a field of odd characteristic p , let f ( x ) be an irreducible separable polynomial of degree n 5 with big Galois group (the symmetric group or the alternating group). Let C be the hyperelliptic curve y 2 = f ( x ) and J ( C ) its jacobian. We prove that J ( C ) does not have nontrivial endomorphisms over an algebraic closure of K if either n 7 or p 3 .

Birational positivity in dimension 4

Behrouz Taji (2014)

Annales de l’institut Fourier

Similarity:

In this paper we prove that for a nonsingular projective variety of dimension at most 4 and with non-negative Kodaira dimension, the Kodaira dimension of coherent subsheaves of Ω p is bounded from above by the Kodaira dimension of the variety. This implies the finiteness of the fundamental group for such an X provided that X has vanishing Kodaira dimension and non-trivial holomorphic Euler characteristic.

Real method of interpolation on subcouples of codimension one

S. V. Astashkin, P. Sunehag (2008)

Studia Mathematica

Similarity:

We find necessary and sufficient conditions under which the norms of the interpolation spaces ( N , N ) θ , q and ( X , X ) θ , q are equivalent on N, where N is the kernel of a nonzero functional ψ ∈ (X₀ ∩ X₁)* and N i is the normed space N with the norm inherited from X i (i = 0,1). Our proof is based on reducing the problem to its partial case studied by Ivanov and Kalton, where ψ is bounded on one of the endpoint spaces. As an application we completely resolve the problem of when the range of the operator T θ = S - 2 θ I (S...

The Lizorkin-Freitag formula for several weighted L p spaces and vector-valued interpolation

Irina Asekritova, Natan Krugljak, Ludmila Nikolova (2005)

Studia Mathematica

Similarity:

A complete description of the real interpolation space L = ( L p ( ω ) , . . . , L p ( ω ) ) θ , q is given. An interesting feature of the result is that the whole measure space (Ω,μ) can be divided into disjoint pieces Ω i (i ∈ I) such that L is an l q sum of the restrictions of L to Ω i , and L on each Ω i is a result of interpolation of just two weighted L p spaces. The proof is based on a generalization of some recent results of the first two authors concerning real interpolation of vector-valued spaces.